

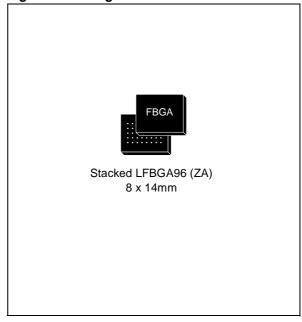
M36WT864TF M36WT864BF

64 Mbit (4Mb x16, Multiple Bank, Burst) Flash Memory and 8 Mbit (512K x16) SRAM, Multiple Memory Product

PRODUCT PREVIEW

FEATURES SUMMARY

- SUPPLY VOLTAGE
 - $V_{DDF} = 1.65V \text{ to } 2.2V$
 - $V_{DDS} = V_{DDQF} = 2.7V \text{ to } 3.3V$
 - V_{PPF} = 12V for Fast Program (optional)
- ACCESS TIME: 70, 85, 100ns
- LOW POWER CONSUMPTION
- ELECTRONIC SIGNATURE
 - Manufacturer Code: 20h
 - Top Device Code, M36WT864TF: 8810h
 - Bottom Device Code, M36WT864BF: 8811h


FLASH MEMORY

- PROGRAMMING TIME
 - 8µs by Word typical for Fast Factory Program
 - Double/Quadruple Word Program option
 - Enhanced Factory Program options
- MEMORY BLOCKS
 - Multiple Bank Memory Array: 4 Mbit Banks
 - Parameter Blocks (Top or Bottom location)
- DUAL OPERATIONS
 - Program Erase in one Bank while Read in others
 - No delay between Read and Write operations
- BLOCK LOCKING
 - All blocks locked at Power up
 - Any combination of blocks can be locked
 - WP for Block Lock-Down
- SECURITY
 - 128 bit user programmable OTP cells
 - 64 bit unique device number
 - One parameter block permanently lockable
- COMMON FLASH INTERFACE (CFI)
- 100,000 PROGRAM/ERASE CYCLES per BLOCK

SRAM

- 8 Mbit (512K x 16 bit)
- EQUAL CYCLE and ACCESS TIMES: 70ns
- LOW STANDBY CURRENT
- LOW V_{DDS} DATA RETENTION: 1.5V
- TRI-STATE COMMON I/O
- AUTOMATIC POWER DOWN

Figure 1. Packages

July 2002 1/92

M36WT864TF, M36WT864BF

TABLE OF CONTENTS

SUMMARY DESCRIPTION7
Figure 2. Logic Diagram
Table 1. Signal Names
Figure 3. LFBGA Connections (Top view through package)8
SIGNAL DESCRIPTIONS
Address Inputs (A0-A18)
Address Inputs (A19-A21)
Data Input/Output (DQ0-DQ15)
Flash Chip Enable (EF)
Flash Output Enable (GF)
Flash Write Enable (WF)
Flash Write Protect (WPF)
Flash Reset (RPF)
Flash Latch Enable (LF)9
Flash Clock (KF)9
Flash Wait (WAITF)
SRAM Chip Enable (E1S, E2S)
SRAM Write Enable (WS)
SRAM Output Enable (GS)9
SRAM Upper Byte Enable (UBS)
SRAM Lower Byte Enable (LBS)
V _{DDF} Supply Voltage
V _{DDQF} and V _{DDS} Supply Voltage
V _{PPF} Program Supply Voltage
V _{SSF} ,V _{SSQF} and V _{SSS} Grounds10
FUNCTIONAL DESCRIPTION11
Figure 4. Functional Block Diagram
Table 2. Main Operation Modes
Flash Memory Component
SRAM Component
Table 3. Flash Bank Architecture
Figure 5. Flash Block Addresses
rigure 3. Fidan Block Addresses
FLASH BUS OPERATIONS
Bus Read
Bus Write
Address Latch
Output Disable
Standby
Reset
FLASH COMMAND INTERFACE

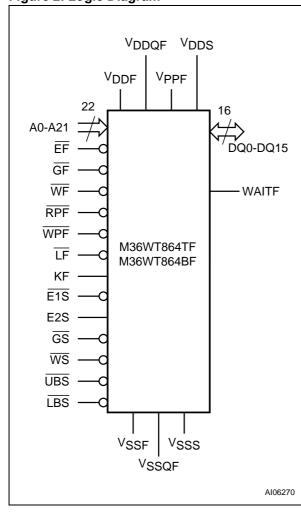
	Table 4. Command Codes	. 16
	COMMAND INTERFACE - STANDARD COMMANDS	. 17
	Read Array Command	. 17
	Read Status Register Command	. 17
	Read Electronic Signature Command	. 17
	Read CFI Query Command	. 17
	Clear Status Register Command	. 17
	Block Erase Command	. 17
	Bank Erase Command	. 18
	Program Command	. 18
	Program/Erase Suspend Command	. 18
	Program/Erase Resume Command	
	Protection Register Program Command	. 19
	Set Configuration Register Command	
	Block Lock Command	
	Block Unlock Command	
	Block Lock-Down Command	
	Table 5. Flash Standard Commands	
	Table 6. Electronic Signature Codes	
	Figure 6. Flash Security Block and Protection Register Memory Map	. 22
	COMMAND INTERFACE - FACTORY PROGRAM COMMANDS	. 23
	Double Word Program Command	. 23
	Quadruple Word Program Command	. 23
	Enhanced Factory Program Command	
	Setup Phase	. 24
	Program Phase	. 24
	Verify Phase	. 24
	Exit Phase	. 24
	Quadruple Enhanced Factory Program Command	. 24
	Setup Phase	. 25
	Load Phase	
	Program and Verify Phase	. 25
	Exit Phase	
	Table 7. Flash Factory Program Commands	. 26
C1	ASH STATUS REGISTER	27
r L		
	Program/Erase Controller Status Bit (SR7)	
	Erase Suspend Status Bit (SR6)	
	Erase Status Bit (SR5)	
	Program Status Bit (SR4)	
	V _{PPF} Status Bit (SR3)	
	Program Suspend Status Bit (SR2)	
	Block Protection Status Bit (SR1)	
	Bank Write/Multiple Word Program Status Bit (SR0)	
	Table 8. Flash Status Register Bits	. 29

M36WT864TF, M36WT864BF

FLASH CONFIGURATION REGISTER	30
Read Select Bit (CR15)	30
X-Latency Bits (CR13-CR11)	30
Wait Polarity Bit (CR10)	30
Data Output Configuration Bit (CR9)	30
Wait Configuration Bit (CR8)	
Burst Type Bit (CR7)	
Valid Clock Edge Bit (CR6)	
Wrap Burst Bit (CR3)	
Burst length Bits (CR2-CR0)	
Table 9. Flash Configuration Register	
Table 10. Burst Type Definition	
Figure 8. Wait Configuration Example	
rigure 6. Wait Corniguration Example	
FLASH READ MODES	35
Asynchronous Read Mode	35
Synchronous Burst Read Mode	35
Single Synchronous Read Mode	35
ELACUEDUAL OPERATIONS AND MULTIPLE DANK ARCHITECTURE	20
FLASH DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE	
Table 11. Dual Operations Allowed In Other Banks	
Table 12. Dual Operations Allowed In Same Bank	36
FLASH BLOCK LOCKING	37
Reading a Block's Lock Status	37
Locked State	
Unlocked State	
Lock-Down State	37
Locking Operations During Erase Suspend	37
Table 13. Flash Lock Status	38
FLASH PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES	30
Table 14. Flash Program, Erase Times and Endurance Cycles	
SRAM OPERATIONS	40
Read	40
Write	
Standby/Power-Down	
Data Retention	
Output Disable	40
MAYIMI M DATING	4.4
MAXIMUM RATING	
Table 15 Absolute Maximum Ratings	41

DC AND AC PARAMETERS	42
Table 16. Operating and AC Measurement Conditions	42
Figure 9. AC Measurement I/O Waveform	
Figure 10. AC Measurement Load Circuit	42
Table 17. Device Capacitance	42
Table 18. Flash DC Characteristics - Currents	43
Table 19. Flash DC Characteristics - Voltages	
Table 20. SRAM DC Characteristics	
Figure 11. Flash Asynchronous Random Access Read AC Waveforms	
Figure 12. Flash Asynchronous Page Read AC Waveforms	
Table 21. Flash Asynchronous Read AC Characteristics	
Figure 13. Flash Synchronous Burst Read AC Waveforms	
Figure 14. Flash Single Synchronous Read AC Waveforms	
Table 22. Flash Synchronous Read AC Characteristics	
Figure 16. Flash Write AC Waveforms, Write Enable Controlled	
Table 23. Flash Write AC Characteristics, Write Enable Controlled	
Figure 17. Flash Write AC Waveforms, Chip Enable Controlled	
Table 24. Flash Write AC Characteristics, Chip Enable Controlled	
Figure 18. Flash Reset and Power-up AC Waveforms	
Table 25. Flash Reset and Power-up AC Characteristics	
Figure 19. SRAM Address Controlled, Read AC Waveforms	56
Figure 20. SRAM Chip Enable or Output Enable Controlled, Read AC Waveforms	56
Figure 21. SRAM Chip Enable or UBS/LBS Controlled, Standby AC Waveforms	
Table 26. SRAM Read and Standby AC Characteristics	
Figure 22. SRAM Write AC Waveforms, Write Enable Controlled	
Figure 23. SRAM Write AC Waveforms, Chip Enable Controlled	
Figure 24. SRAM Write AC Waveforms, UB/LB Controlled	
Table 27. SRAM Write AC Characteristics	
Figure 25. SRAM Low VDD Data Retention AC Waveforms, E1S Controlled Figure 26. SRAM Low VDD Data Retention AC Waveforms, E2S Controlled	
Table 28. SRAM Low VDD Data Retention Characteristics	
Table 20. SINAM LOW VDD Data Neterition Characteristics	
PACKAGE MECHANICAL	62
Figure 27. Stacked LFBGA96 - 8x14mm, 8x10ball array, 0.8mm pitch, Bottom View	
62	ackage Odiline
Table 29. Stacked LFBGA96 - 8x14mm, 8x10 ball array, 0.8mm pitch, Package Med	hanical Data 62
PART NUMBERING	63
Table 30. Ordering Information Scheme	63
REVISION HISTORY	
Table 31. Document Revision History	64
APPENDIX A. FLASH BLOCK ADDRESS TABLES	65

M36WT864TF, M36WT864BF


Table 32. Flash Top Boot Block Addresses	
APPENDIX B. FLASH COMMON FLASH INTERFACE	69
Table 34. Query Structure Overview	69
Table 35. CFI Query Identification String	69
Table 36. CFI Query System Interface Information	
Table 37. Device Geometry Definition	70
Table 38. Primary Algorithm-Specific Extended Query Table	71
Table 39. Protection Register Information	
Table 40. Burst Read Information	
Table 41. Bank and Erase Block Region Information	72
Table 42. Bank and Erase Block Region 1 Information	
Table 43. Bank and Erase Block Region 2 Information	74
APPENDIX C. FLASH FLOWCHARTS AND PSEUDO CODES	76
Figure 28. Program Flowchart and Pseudo Code	76
Figure 29. Double Word Program Flowchart and Pseudo code	77
Figure 30. Quadruple Word Program Flowchart and Pseudo Code	78
Figure 31. Program Suspend & Resume Flowchart and Pseudo Code	79
Figure 32. Block Erase Flowchart and Pseudo Code	
Figure 33. Erase Suspend & Resume Flowchart and Pseudo Code	
Figure 34. Locking Operations Flowchart and Pseudo Code	
Figure 35. Protection Register Program Flowchart and Pseudo Code	
Figure 36. Enhanced Factory Program Flowchart	
Enhanced Factory Program Pseudo Code	
Figure 37. Quadruple Enhanced Factory Program Flowchart	
Quadruple Enhanced Factory Program Pseudo Code	87
APPENDIX D. FLASH COMMAND INTERFACE STATE TABLES	88
Table 44. Command Interface States - Modify Table, Next State	88
Table 45. Command Interface States - Modify Table, Next Output	
Table 46. Command Interface States - Lock Table, Next State	90
Table 47. Command Interface States - Lock Table, Next Output	91

SUMMARY DESCRIPTION

The M36WT864 is a low voltage Multiple Memory Product which combines two memory devices; a 64 Mbit Multiple Bank Flash memory and an 8 Mbit SRAM. Recommended operating conditions do not allow both the Flash and the SRAM to be active at the same time.

The memory is offered in a Stacked LFBGA96 (8 x 14mm, 0.8 mm pitch) package and is supplied with all the bits erased (set to '1').

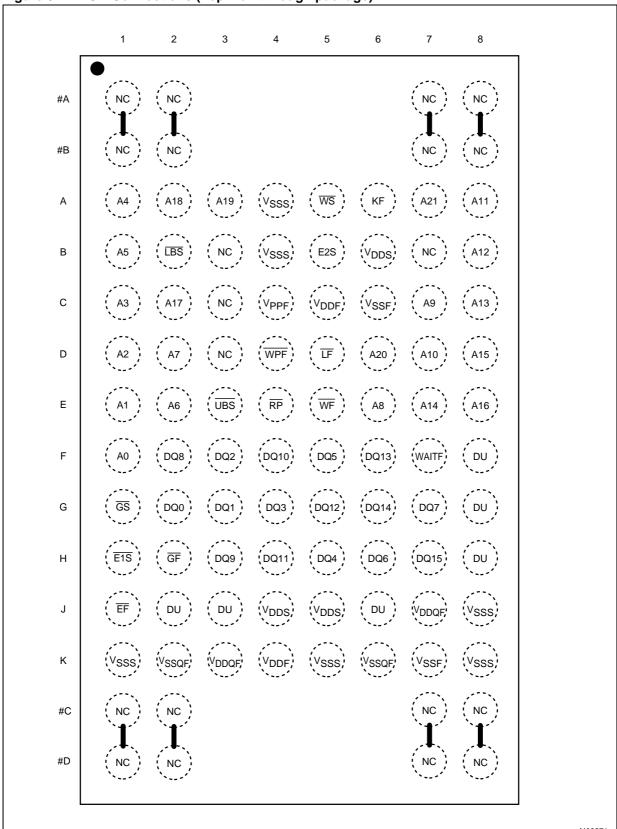

Figure 2. Logic Diagram

Table 1. Signal Names

Table 1. Signa	ai Nailles
A0-A18	Address Inputs
A19-A21	Address Inputs for Flash Chip only
DQ0-DQ15	Data Input/Output
V_{DDF}	Flash Power Supply
V _{DDQF}	Flash Power Supply for I/O Buffers
V _{PPF}	Flash Optional Supply Voltage for Fast Program & Erase
V _{SSF}	Flash Ground
V _{SSQF}	Flash Ground for I/O Buffers
V _{DDS}	SRAM Power Supply
V _{SSS}	SRAM Ground
NC	Not Connected Internally
DU	Do Not Use as Internally Connected
Flash control f	unctions
LF	Latch Enable input
EF	Chip Enable input
GF	Output Enable input
WF	Write Enable input
RPF	Reset input
WPF	Write Protect input
KF	Flash Burst Clock
WAITF	Wait Data in Burst Mode
SRAM control	functions
E1S, E2S	Chip Enable inputs
GS	Output Enable input
WS	Write Enable input
UBS	Upper Byte Enable input
LBS	Lower Byte Enable input

Figure 3. LFBGA Connections (Top view through package)

AI06271

SIGNAL DESCRIPTIONS

See Figure 2 Logic Diagram and Table 1,Signal Names, for a brief overview of the signals connected to this device.

Address Inputs (A0-A18). Addresses A0-A18 are common inputs for the Flash and the SRAM components. The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine. The Flash memory is accessed through the Chip Enable (EF) and Write Enable (WF) signals, while the SRAM is accessed through two Chip Enable signals (E1S and E2S) and the Write Enable signal (WS).

Address Inputs (A19-A21). Addresses A19-A21 are inputs for the Flash component only. The Flash memory is accessed through the Chip Enable (EF) and Write Enable (WF) signals.

Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be programmed during a Write Bus operation.

Flash Chip Enable (EF). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is at V_{IL} and Reset is at V_{IH} the device is in active mode. When Chip Enable is at V_{IH} the memory is deselected, the outputs are high impedance and the power consumption is reduced to the stand-by level.

Flash Output Enable (GF). The Output Enable controls data outputs during the Bus Read operation of the memory.

Flash Write Enable (WF). The Write Enable controls the Bus Write operation of the memory's Command Interface. The data and address inputs are latched on the rising edge of Chip Enable or Write Enable whichever occurs first.

Flash Write Protect (WPF). Write Protect is an input that gives an additional hardware protection for each block. When Write Protect is at V_{IL} , the Lock-Down is enabled and the protection status of the Locked-Down blocks cannot be changed. When Write Protect is at V_{IH} , the Lock-Down is disabled and the Locked-Down blocks can be locked or unlocked. (refer to Table 13, Lock Status).

Flash Reset (\overline{RPF}). The Reset input provides a hardware reset of the memory. When Reset is at V_{IL} , the memory is in reset mode: the outputs are high impedance and the current consumption is reduced to the Reset Supply Current I_{DD2} . Refer to Table 2, DC Characteristics - Currents for the value of I_{DD2} . After Reset all blocks are in the Locked state and the Configuration Register is reset.

When Reset is at V_{IH} , the device is in normal operation. Exiting reset mode the device enters asynchronous read mode, but a negative transition of Chip Enable or Latch Enable is required to ensure valid data outputs.

The Reset pin can be interfaced with 3V logic without any additional circuitry. It can be tied to V_{RPH} (refer to Table 19, DC Characteristics).

Flash Latch Enable (LF). Latch Enable latches the address bits on its rising edge. The address latch is transparent when Latch Enable is at V_{IL} and it is inhibited when Latch Enable is at V_{IH} . Latch Enable can be kept Low (also at board level) when the Latch Enable function is not required or supported.

Flash Clock (KF). The clock input synchronizes the Flash memory to the microcontroller during synchronous read operations; the address is latched on a Clock edge (rising or falling, according to the configuration settings) when Latch Enable is at V_{IL} . Clock is don't care during asynchronous read and in write operations.

Flash Wait (WAITF). Wait is a Flash output signal used during synchronous read to indicate whether the data on the output bus are valid. This output is high impedance when Flash Chip Enable is at V_{IL} or Flash Reset is at V_{IL} . It can be configured to be active during the wait cycle or one clock cycle in advance. The WAITF signal is not gated by Output Enable.

SRAM Chip Enable (E1S, E2S). The Chip Enable inputs activate the SRAM memory control logic, input buffers and decoders. E1S at V_{IH} or E2S at V_{IL} deselects the memory and reduces the power consumption to the standby level. E1S and E2S can also be used to control writing to the SRAM memory array, while WS remains at V_{IL} . It is not allowed to set EF at V_{IL} , E1S at V_{IL} and E2S at V_{IH} at the same time.

SRAM Write Enable (WS). The Write Enable input controls writing to the SRAM memory array. WS is active low.

SRAM Output Enable (GS). The Output Enable gates the outputs through the data buffers during a read operation of the SRAM memory. GS is active low.

SRAM Upper Byte Enable (UBS). The Upper Byte Enable input <u>enables</u> the upper byte for SRAM (DQ8-DQ15). UBS is active low.

SRAM Lower Byte Enable (LBS). The Lower Byte Enable input <u>ena</u>bles the lower byte for SRAM (DQ0-DQ7). LBS is active low.

V_{DDF} Supply Voltage. V_{DDF} provides the power supply to the internal core of the Flash memory de-

vice. It is the main power supply for all Flash operations (Read, Program and Erase).

V_{DDQF} and **V**_{DDS} **Supply Voltage.** V_{DDQF} provides the power supply for the Flash memory I/O pins and V_{DDS} provides the power supply for the SRAM control and I/O pins. This allows all Outputs to be powered independently from the Flash core power supply, V_{DDF}. V_{DDQF} can be tied to V_{DDS} or it can use a separate supply.

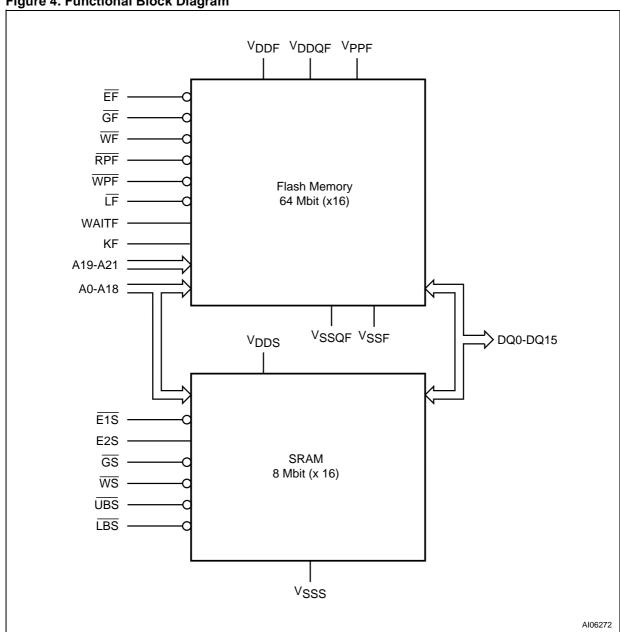
V_{PPF} Program Supply Voltage. V_{PPF} is both a Flash control input and a Flash power supply pin. The two functions are selected by the voltage range applied to the pin.

If V_{PPF} is kept in a low voltage range (0V to V_{DDQF}) V_{PPF} is seen as a control input. In this case a voltage lower than V_{PPLKF} gives an absolute protection against program or erase, while V_{PPF} > V_{PP1F} enables these functions (see Tables 18 and 19, DC Characteristics for the relevant values). V_{PPF}

is only sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect and program or erase operations continue.

If V_{PPF} is in the range of V_{PPHF} it acts as a power supply pin. In this condition V_{PPF} must be stable until the Program/Erase algorithm is completed.

V_{SSF}, **V**_{SSQF} and **V**_{SSS} Grounds. V_{SSF}, V_{SSQF} and V_{SSS} are the ground references for all voltage measurements in the Flash (core and I/O Buffers) and SRAM chips, respectively.


Note: Each device in a system should have V_{DDF} and V_{PPF} decoupled with a $0.1\mu F$ ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors should be as close as possible to the package). See Figure 10, AC Measurement Load Circuit. The PCB trace widths should be sufficient to carry the required V_{PPF} program and erase currents.

FUNCTIONAL DESCRIPTION

The Flash and SRAM components have separate power supplies and grounds and are distinguished by three <u>chip</u> enable inputs: EF for the Flash memory and, E1S and E2S for the SRAM.

Recommended operating conditions do not allow both the Flash and the SRAM to be in active mode at the same time. The most common example is simultaneous read operations on the Flash and the SRAM which would result in a data bus contention. Therefore it is recommended to put the SRAM in the high impedance state when reading the Flash and vice versa (see Table 2 Main Operation Modes for details).

Figure 4. Functional Block Diagram

M36WT864TF, M36WT864BF

Table 2. Main Operation Modes

Op	Operation Mode		GF	WF	LF	RPF	WAITF	E1S	E2S	GS	ws	UBS, LBS	DQ15-DQ0
	Bus Read	V _{IL}	V_{IL}	V _{IH}	V _{IL} ⁽²⁾	V _{IH}			SRAM	Data Output			
	Bus Write	V _{IL}	V _{IH}	V _{IL}	V _{IL} ⁽²⁾	VIH			SRAM	Data Input			
Flash Memory	Address Latch	V _{IL}	Х	V _{IH}	V _{IL}	V _{IH}			SRAM	Data Output or Hi-Z (3)			
Flash	Output Disable	V _{IL}	V _{IH}	V _{IH}	Х	V _{IH}			SRAM	Hi-Z			
	Standby	VIH	Х	Х	Х	V _{IH}	Hi-Z	Any SRAM mode is allowed					Hi-Z
	Reset	Х	Х	Х	Х	V _{IL}	Hi-Z	А	Any SRAM mode is allowed				Hi-Z
	Read		Flash must be disabled							VIL	V _{IH}	V _{IL}	Data out Word Read
	Write	Flash must be disabled							V _{IH}	Х	VIL	VIL	Data in Word Write
								V_{IH}	Х	Х	Х	Х	Hi-Z
SRAM	Standby/ Power Down		Any Flash mode is allowable				е	Х	VIL	Х	Х	Х	Hi-Z
S		. =						Х	Х	Х	Х	V _{IH}	Hi-Z
	Data Retention		Any	allowabl	е	V _{IH}	V _{IL}	Х	Х	Х	Hi-Z		
	Output Disable	Any Flash mode is allowable							V _{IH}	V _{IH}	V _{IH}	Х	Hi-Z

47/ 12/92

Note: 1. X = Don't care.

2. L can be tied to V_{IH} if the valid address has been previously latched.

3. Depends on G.

4. WAIT signal polarity is configured using the Set Configuration Register command.

Flash Memory Component

The Flash memory is a 64 Mbit (4Mbit x16) non-volatile Flash memory that may be erased electrically at block level and programmed in-system on a Word-by-Word basis using a 1.65V to 2.2V V_{DD} supply for the circuitry and a 1.65V to 3.3V V_{DDQ} supply for the Input/Output pins. An optional 12V V_{PPF} power supply is provided to speed up customer programming.

The device features an asymmetrical block architecture with an array of 135 blocks divided into 4 Mbit banks. There are 15 banks each containing 8 main blocks of 32 KWords, and one parameter bank containing 8 parameter blocks of 4 KWords and 7 main blocks of 32 KWords. The Multiple Bank Architecture allows Dual Operations, while programming or erasing in one bank, Read operations are possible in other banks. Only one bank at a time is allowed to be in Program or Erase mode. It is possible to perform burst reads that cross bank boundaries. The bank architecture is summarized in Table 3, and the memory maps are shown in Figure 5. The Parameter Blocks are located at the top of the memory address space for the M36WT864TF, and at the bottom for the M36WT864BF.

Each block can be erased separately. Erase can be suspended, in order to perform program in any other block, and then resumed. Program can be suspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles using the supply voltage V_{DD} . There are two Enhanced Factory programming commands available to speed up programming.

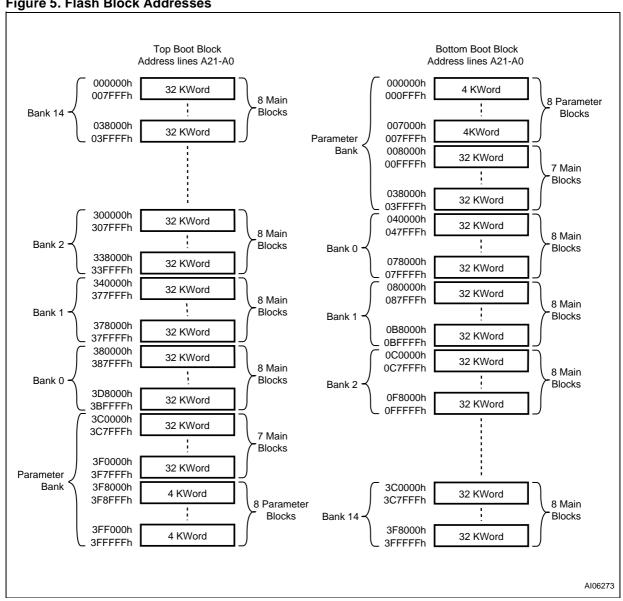
Program and Erase commands are written to the Command Interface of the memory. An internal Program/Erase Controller takes care of the timings necessary for program and erase operations. The end of a program or erase operation can be detected and any error conditions identified in the Status Register. The command set required to control the memory is consistent with JEDEC standards.

The device supports synchronous burst read and asynchronous read from all blocks of the memory array; at power-up the device is configured for asynchronous read. In synchronous burst mode, data is output on each clock cycle at frequencies of up to 54MHz.

The device features an Automatic Standby mode. During asynchronous read operations, after a bus inactivity of 150ns, the device automatically switches to the Automatic Standby mode. In this condition the power consumption is reduced to the standby value I_{DD4} and the outputs are still driven.

The Flash memory features an instant, individual block locking scheme that allows any block to be locked or unlocked with no latency, enabling instant code and data protection. All blocks have three levels of protection. They can be locked and locked-down individually preventing any accidental programming or erasure. There is an additional hardware protection against program and erase. When $V_{PPF} \leq V_{PPLK}$ all blocks are protected against program or erase. All blocks are locked at Power- Up.

The device includes a Protection Register and a Security Block to increase the protection of a system's design. The Protection Register is divided into two segments: a 64 bit segment containing a unique device number written by ST, and a 128 bit segment One-Time-Programmable (OTP) by the user. The user programmable segment can be permanently protected. The Security Block, parameter block 0, can be permanently protected by the user. Figure 6, shows the Security Block and Protection Register Memory Map.


SRAM Component

The SRAM is an 8 Mbit (512Kb x16) asynchronous random access memory which features a super low voltage operation and low current consumption with an access time of 70ns. The memory operations can be performed using a single low voltage supply, 2.7V to 3.3V.

Table 3. Flash Bank Architecture

Number	Bank Size	Parameter Blocks	Main Blocks
Parameter Bank	4 Mbits	8 blocks of 4 KWords	7 blocks of 32 KWords
Bank 0	4 Mbits	-	8 blocks of 32 KWords
Bank 1	4 Mbits	-	8 blocks of 32 KWords
Bank 2	4 Mbits	-	8 blocks of 32 KWords
Bank 13	4 Mbits	-	8 blocks of 32 KWords
Bank 14	4 Mbits	-	8 blocks of 32 KWords

Figure 5. Flash Block Addresses

FLASH BUS OPERATIONS

There are six standard bus operations that control the Flash device. These are Bus Read, Bus Write, Address Latch, Output Disable, Standby and Reset. See Table 2, Main Operating Modes, for a summary.

Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect Bus Write operations.

Bus Read. Bus Read operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the Common Flash Interface. Both Chip Enable and Output Enable must be at V_{IL} in order to perform a read operation. The Chip Enable input should be used to enable the device. Output Enable should be used to gate data onto the output. The data read depends on the previous command written to the memory (see Command Interface section). See Figures 11, 12, 13 and 14 Read AC Waveforms, and Tables 21 and 22 Read AC Characteristics, for details of when the output becomes valid.

Bus Write. Bus Write operations write Commands to the memory or latch Input Data to be programmed. A bus write operation is initiated when Chip Enable and Write Enable are at V_{IL} with Output Enable at V_{IH}. Commands, Input Data and Addresses are latched on the rising edge of Write Enable or Chip Enable, whichever occurs first. The addresses can also be latched prior to the write operation by toggling Latch Enable. In this case

the Latch Enable should be tied to $V_{\mbox{\scriptsize IH}}$ during the bus write operation.

See Figures 16 and 17, Write AC Waveforms, and Tables 23 and 24, Write AC Characteristics, for details of the timing requirements.

Address Latch. Address latch operations input valid addresses. Both Chip enable and Latch Enable must be at V_{IL} during address latch operations. The addresses are latched on the rising edge of Latch Enable.

Output Disable. The outputs are high impedance when the Output Enable is at V_{IH}.

Standby. Standby disables most of the internal circuitry allowing a substantial reduction of the current consumption. The memory is in stand-by when Chip Enable and Reset are at V_{IH} . The power consumption is reduced to the stand-by level and the outputs are set to high impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable switches to V_{IH} during a program or erase operation, the device enters Standby mode when finished.

Reset. During Reset mode the memory is deselected and the outputs are high impedance. The memory is in Reset mode when Reset is at V_{IL} . The power consumption is reduced to the Standby level, independently from the Chip Enable, Output Enable or Write Enable inputs. If Reset is pulled to V_{SS} during a Program or Erase, this operation is aborted and the memory content is no longer valid.

FLASH COMMAND INTERFACE

All Bus Write operations to the memory are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. An internal Program/Erase Controller handles all timings and verifies the correct execution of the Program and Erase commands. The Program/Erase Controller provides a Status Register whose output may be read at any time to monitor the progress or the result of the operation.

The Command Interface is reset to read mode when power is first applied, when exiting from Reset or whenever V_{DD} is lower than V_{LKO} . Command sequences must be followed exactly. Any invalid combination of commands will reset the device to read mode.

Refer to Table 4, Command Codes and Appendix D, Tables 44, 45, 46 and 47, Command Interface States - Modify and Lock Tables, for a summary of the Command Interface.

The Command Interface is split into two types of commands: Standard commands and Factory Program commands. The following sections explain in detail how to perform each command.

Table 4. Command Codes

Hex Code	Command
01h	Block Lock Confirm
03h	Set Configuration Register Confirm
10h	Alternative Program Setup
20h	Block Erase Setup
2Fh	Block Lock-Down Confirm
30h	Enhanced Factory Program Setup
35h	Double Word Program Setup
40h	Program Setup
50h	Clear Status Register
56h	Quadruple Word Program Setup
60h	Block Lock Setup, Block Unlock Setup, Block Lock Down Setup and Set Configuration Register Setup
70h	Read Status Register
75h	Quadruple Enhanced Factory Program Setup
80h	Bank Erase Setup
90h	Read Electronic Signature
98h	Read CFI Query
B0h	Program/Erase Suspend
C0h	Protection Register Program
D0h	Program/Erase Resume, Block Erase Confirm, Bank Erase Confirm, Block Unlock Confirm or Enhanced Factory Program Confirm
FFh	Read Array

COMMAND INTERFACE - STANDARD COMMANDS

The following commands are the basic commands used to read, write to and configure the device. Refer to Table 5, Standard Commands, in conjunction with the following text descriptions.

Read Array Command

The Read Array command returns the addressed bank to Read Array mode. One Bus Write cycle is required to issue the Read Array command and return the addressed bank to Read Array mode. Subsequent read operations will read the addressed location and output the data. A Read Array command can be issued in one bank while programming or erasing in another bank. However if a Read Array command is issued to a bank currently executing a Program or Erase operation the command will be executed but the output data is not guaranteed.

Read Status Register Command

The Status Register indicates when a Program or Erase operation is complete and the success or failure of operation itself. Issue a Read Status Register command to read the Status Register content. The Read Status Register command can be issued at any time, even during Program or Erase operations.

The following read operations output the content of the Status Register of the addressed bank. The Status Register is latched on the falling edge of E or G signals, and can be read until E or G returns to V_{IH} . Either E or G must be toggled to update the latched data. See Table 8 for the description of the Status Register Bits. This mode supports asynchronous or single synchronous reads only.

Read Electronic Signature Command

The Read Electronic Signature command reads the Manufacturer and Device Codes, the Block Locking Status, the Protection Register, and the Configuration Register.

The Read Electronic Signature command consists of one write cycle to an address within one of the banks. A subsequent Read operation in the same bank will output the Manufacturer Code, the Device Code, the protection Status of the blocks in the targeted bank, the Protection Register, or the Configuration Register (see Table 6).

If a Read Electronic Signature command is issued in a bank that is executing a Program or Erase operation the bank will go into Read Electronic Signature mode, subsequent Bus Read cycles will output the Electronic Signature data and the Program/Erase controller will continue to program or erase in the background. This mode supports asynchronous or single synchronous reads only, it does not support page mode or synchronous burst reads.

Read CFI Query Command

The Read CFI Query command is used to read data from the Common Flash Interface (CFI). The Read CFI Query Command consists of one Bus Write cycle, to an address within one of the banks. Once the command is issued subsequent Bus Read operations in the same bank read from the Common Flash Interface.

If a Read CFI Query command is issued in a bank that is executing a Program or Erase operation the bank will go into Read CFI Query mode, subsequent Bus Read cycles will output the CFI data and the Program/Erase controller will continue to Program or Erase in the background. This mode supports asynchronous or single synchronous reads only, it does not support page mode or synchronous burst reads.

The status of the other banks is not affected by the command (see Table 11). After issuing a Read CFI Query command, a Read Array command should be issued to the addressed bank to return the bank to Read Array mode.

See Appendix C, Common Flash Interface, Tables 34, 35, 36, 37, 38, 40, 41, 42 and 43 for details on the information contained in the Common Flash Interface memory area.

Clear Status Register Command

The Clear Status Register command can be used to reset (set to '0') error bits 1, 3, 4 and 5 in the Status Register. One bus write cycle is required to issue the Clear Status Register command. After the Clear Status Register command the bank returns to read mode.

The error bits in the Status Register do not automatically return to '0' when a new command is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command.

Block Erase Command

The Block Erase command can be used to erase a block. It sets all the bits within the selected block to '1'. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error. The Block Erase command can be issued at any moment, regardless of whether the block has been programmed or not.

Two Bus Write cycles are required to issue the command.

- The first bus cycle sets up the Erase command.
- The second latches the block address in the internal state machine and starts the Program/ Erase Controller.

If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits 4 and 5 are set and the command aborts. Erase aborts if Reset turns to V_{IL} . As data integrity cannot be guaranteed when the Erase operation is aborted, the block must be erased again.

Once the command is issued the device outputs the Status Register data when any address within the bank is read. At the end of the operation the bank will remain in Read Status Register mode until a Read Array, Read CFI Query or Read Electronic Signature command is issued.

During Erase operations the bank containing the block being erased will only accept the Read Array, Read Status Register, Read Electronic Signature, Read CFI Query and the Program/Erase Suspend command, all other commands will be ignored. Refer to Dual Operations section for detailed information about simultaneous operations allowed in banks not being erased. Typical Erase times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.

See Appendix C, Figure 32, Block Erase Flowchart and Pseudo Code, for a suggested flowchart for using the Block Erase command.

Bank Erase Command

The Bank Erase command can be used to erase a bank. It sets all the bits within the selected bank to '1'. All previous data in the bank is lost. The Bank Erase command will ignore any protected blocks within the bank. If all blocks in the bank are protected then the Bank Erase operation will abort and the data in the bank will not be changed. The Status Register will not output any error.

Two Bus Write cycles are required to issue the command.

- The first bus cycle sets up the Bank Erase command.
- The second latches the bank address in the internal state machine and starts the Program/ Erase Controller.

If the second bus cycle is not Write Bank Erase Confirm (D0h), Status Register bits SR4 and SR5 are set and the command aborts. Erase aborts if Reset turns to V_{IL} . As data integrity cannot be guaranteed when the Erase operation is aborted, the bank must be erased again.

Once the command is issued the device outputs the Status Register data when any address within the bank is read. At the end of the operation the bank will remain in Read Status Register mode until a Read Array, Read CFI Query or Read Electronic Signature command is issued.

During Bank Erase operations the bank being erased will only accept the Read Array, Read Status Register, Read Electronic Signature and Read

CFI Query command, all other commands will be ignored. A Bank Erase operation cannot be suspended

Refer to Dual Operations section for detailed information about simultaneous operations allowed in banks not being erased. Typical Erase times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.

Program Command

The memory array can be programmed word-byword. Only one Word in one bank can be programmed at any one time. Two bus write cycles are required to issue the Program Command.

- The first bus cycle sets up the Program command.
- The second latches the Address and the Data to be written and starts the Program/Erase Controller.

After programming has started, read operations in the bank being programmed output the Status Register content.

During Program operations the bank being programmed will only accept the Read Array, Read Status Register, Read Electronic Signature, Read CFI Query and the Program/Erase Suspend command. Refer to Dual Operations section for detailed information about simultaneous operations allowed in banks not being programmed. Typical Program times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.

Programming aborts if Reset goes to V_{IL}. As data integrity cannot be guaranteed when the program operation is aborted, the memory location must be reprogrammed.

See Appendix C, Figure 28, Program Flowchart and Pseudo Code, for the flowchart for using the Program command.

Program/Erase Suspend Command

The Program/Erase Suspend command is used to pause a Program or Block Erase operation. A Bank Erase operation cannot be suspended.

One bus write cycle is required to issue the Program/Erase command. Once the Program/Erase Controller has paused bits SR7, SR6 and/ or SR2 of the Status Register will be set to '1'. The command can be addressed to any bank.

During Program/Erase Suspend the Command Interface will accept the Program/Erase Resume, Read Array (cannot read the suspended block), Read Status Register, Read Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation was Erase then the Clear status Register, Program, Block Lock, Block Lock-Down or Block Unlock commands will also be accepted. The block being erased may be protected

by issuing the Block Lock, Block Lock-Down or Protection Register Program commands. Only the blocks not being erased may be read or programmed correctly. When the Program/Erase Resume command is issued the operation will complete. Refer to the Dual Operations section for detailed information about simultaneous operations allowed during Program/Erase Suspend.

During a Program/Erase Suspend, the device can be placed in standby mode by taking Chip Enable to V_{IH} . Program/Erase is aborted if Reset turns to V_{IL} .

See Appendix C, Figure 31, Program Suspend & Resume Flowchart and Pseudo Code, and Figure 33, Erase Suspend & Resume Flowchart and Pseudo Code for flowcharts for using the Program/ Erase Suspend command.

Program/Erase Resume Command

The Program/Erase Resume command can be used to restart the Program/Erase Controller after a Program/Erase Suspend command has paused it. One Bus Write cycle is required to issue the command. The command can be written to any address.

The Program/Erase Resume command does not change the read mode of the banks. If the suspended bank was in Read Status Register, Read Electronic signature or Read CFI Query mode the bank remains in that mode and outputs the corresponding data. If the bank was in Read Array mode subsequent read operations will output invalid data.

If a Program command is issued during a Block Erase Suspend, then the erase cannot be resumed until the programming operation has completed. It is possible to accumulate suspend operations. For example: suspend an erase operation, start a programming operation, suspend the programming operation then read the array. See Appendix C, Figure 31, Program Suspend & Resume Flowchart and Pseudo Code, and Figure 33, Erase Suspend & Resume Flowchart and Pseudo Code for flowcharts for using the Program/Erase Resume command.

Protection Register Program Command

The Protection Register Program command is used to Program the 128 bit user One-Time-Programmable (OTP) segment of the Protection Register and the Protection Register Lock. The segment is programmed 16 bits at a time. When shipped all bits in the segment are set to '1'. The user can only program the bits to '0'.

Two write cycles are required to issue the Protection Register Program command.

The first bus cycle sets up the Protection Register Program command. ■ The second latches the Address and the Data to be written to the Protection Register and starts the Program/Erase Controller.

Read operations output the Status Register content after the programming has started.

The segment can be protected by programming bit 1 of the Protection Lock Register. Bit 1 of the Protection Lock Register also protects bit 2 of the Protection Lock Register. Programming bit 2 of the Protection Lock Register will result in a permanent protection of Parameter Block #0 (see Figure 6, Security Block and Protection Register Memory Map). Attempting to program a previously protected Protection Register will result in a Status Register error. The protection of the Protection Register and/or the Security Block is not reversible.

The Protection Register Program cannot be suspended. See Appendix C, Figure 35, Protection Register Program Flowchart and Pseudo Code, for a flowchart for using the Protection Register Program command.

Set Configuration Register Command.

The Set Configuration Register command is used to write a new value to the Burst Configuration Control Register which defines the burst length, type, X latency, Synchronous/Asynchronous Read mode and the valid Clock edge configuration.

Two Bus Write cycles are required to issue the Set Configuration Register command.

- The first cycle writes the setup command and the address corresponding to the Configuration Register content.
- The second cycle writes the Configuration Register data and the confirm command.

Once the command is issued the memory returns to Read mode.

The value for the Configuration Register is always presented on A0-A15. CR0 is on A0, CR1 on A1, etc.; the other address bits are ignored.

Block Lock Command

The Block Lock command is used to lock a block and prevent Program or Erase operations from changing the data in it. All blocks are locked at power-up or reset.

Two Bus Write cycles are required to issue the Block Lock command.

- The first bus cycle sets up the Block Lock command.
- The second Bus Write cycle latches the block address.

The lock status can be monitored for each block using the Read Electronic Signature command. Table. 13 shows the Lock Status after issuing a Block Lock command.

The Block Lock bits are volatile, once set they remain set until a hardware reset or power-down/power-up. They are cleared by a Block Unlock command. Refer to the section, Block Locking, for a detailed explanation. See Appendix C, Figure 34, Locking Operations Flowchart and Pseudo Code, for a flowchart for using the Lock command.

Block Unlock Command

The Block Unlock command is used to unlock a block, allowing the block to be programmed or erased. Two Bus Write cycles are required to issue the Block Unlock command.

- The first bus cycle sets up the Block Unlock command.
- The second Bus Write cycle latches the block address.

The lock status can be monitored for each block using the Read Electronic Signature command. Table 13 shows the protection status after issuing a Block Unlock command. Refer to the section, Block Locking, for a detailed explanation and Appendix C, Figure 34, Locking Operations Flow-chart and Pseudo Code, for a flowchart for using the Unlock command.

Block Lock-Down Command

A locked or unlocked block can be locked-down by issuing the Block Lock-Down command. A locked-down block cannot be programmed or erased, or have its protection status changed when WP is low, $V_{\rm IL}$. When WP is high, $V_{\rm IH}$, the Lock-Down function is disabled and the locked blocks can be individually unlocked by the Block Unlock command.

Two Bus Write cycles are required to issue the Block Lock-Down command.

- The first bus cycle sets up the Block Lock command.
- The second Bus Write cycle latches the block address.

The lock status can be monitored for each block using the Read Electronic Signature command. Locked-Down blocks revert to the locked (and not locked-down) state when the device is reset on power-down. Table. 13 shows the Lock Status after issuing a Block Lock-Down command. Refer to the section, Block Locking, for a detailed explanation and Appendix C, Figure 34, Locking Operations Flowchart and Pseudo Code, for a flowchart for using the Lock-Down command.

Table 5. Flash Standard Commands

	S	Bus Operations								
Commands	Cycles		1st Cycle		2nd Cycle					
	5	Op.	Add	Data	Op.	Add	Data			
Read Array	1+	Write	BKA	FFh	Read	WA	RD			
Read Status Register	1+	Write	BKA	70h	Read	BKA ⁽²⁾	SRD			
Read Electronic Signature	1+	Write	ВКА	90h	Read	BKA ⁽²⁾	ESD			
Read CFI Query	1+	Write	BKA	98h	Read	BKA ⁽²⁾	QD			
Clear Status Register	1	Write	BKA	50h						
Block Erase	2	Write	BKA	20h	Write	ВА	D0h			
Bank Erase	2	Write	BKA	80h	Write	BKA	D0h			
Program	2	Write	BKA	40h or 10h	Write	WA	PD			
Program/Erase Suspend	1	Write	Х	B0h						
Program/Erase Resume	1	Write	Х	D0h						
Protection Register Program	2	Write	PRA	C0h	Write	PRA	PRD			
Set Configuration Register	2	Write	CRD	60h	Write	CRD	03h			
Block Lock	2	Write	BKA	60h	Write	ВА	01h			
Block Unlock	2	Write	BKA	60h	Write	BA	D0h			
Block Lock-Down	2	Write	BKA	60h	Write	BA	2Fh			

Note: 1. X = Don't Care, WA=Word Address in targeted bank, RD=Read Data, SRD=Status Register Data, ESD=Electronic Signature Data, QD=Query Data, BA=Block Address, BKA= Bank Address, PD=Program Data, PRA=Protection Register Address, PRD=Protection Register Data, CRD=Configuration Register Data.

2. Must be same bank as in the first cycle. The signature addresses are listed in Table 6.

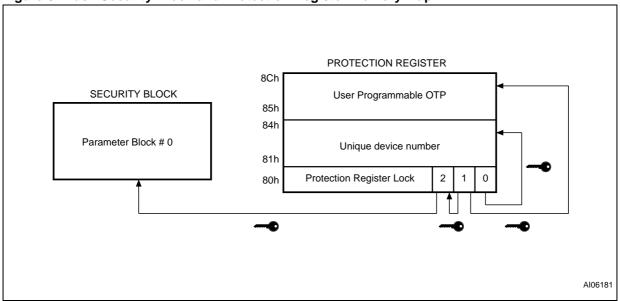

M36WT864TF, M36WT864BF

Table 6. Electronic Signature Codes

	Code	Address (h)	Data (h)
Manufacturer Code		Bank Address + 00	0020
Device Code	Тор	Bank Address + 01	8810
Device Code	Bottom	Bank Address + 01	8811
	Lock		0001
Disch Destantia	Unlocked	Block Address + 02	0000
Block Protection	Locked and Locked-Down	Block Address + 02	0003
	Unlocked and Locked-Down		0002
Reserved		Bank Address + 03	Reserved
Configuration Register	Bank Address + 05	CR	
	ST Factory Default		0006
	Security Block Permanently Locked		0002
Protection Register Lock	OTP Area Permanently Locked	Bank Address + 80	0004
	Security Block and OTP Area Permanently Locked		0000
Protection Register	Bank Address + 81 Bank Address + 84	Unique Device Number	
Protection Register		Bank Address + 85 Bank Address + 8C	OTP Area

Note: CR=Configuration Register.

Figure 6. Flash Security Block and Protection Register Memory Map

COMMAND INTERFACE - FACTORY PROGRAM COMMANDS

The Factory Program commands are used to speed up programming. They require V_{PPF} to be at V_{PPH}. Refer to Table 7, Factory Program Commands, in conjunction with the following text descriptions.

Double Word Program Command

The Double Word Program command improves the programming throughput by writing a page of two adjacent words in parallel. The two words must differ only for the address A0.

Programming should not be attempted when V_{PPF} is not at V_{PPH} . The command can be executed if V_{PPF} is below V_{PPH} but the result is not guaranteed.

Three bus write cycles are necessary to issue the Double Word Program command.

- The first bus cycle sets up the Double Word Program Command.
- The second bus cycle latches the Address and the Data of the first word to be written.
- The third bus cycle latches the Address and the Data of the second word to be written and starts the Program/Erase Controller.

Read operations in the bank being programmed output the Status Register content after the programming has started.

During Double Word Program operations the bank being programmed will only accept the Read Array, Read Status Register, Read Electronic Signature and Read CFI Query command, all other commands will be ignored. Dual operations are not supported during Double Word Program operations and it is not recommended to suspend a Double Word Program operation. Typical Program times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.

Programming aborts if Reset goes to V_{IL} . As data integrity cannot be guaranteed when the program operation is aborted, the memory locations must be reprogrammed.

See Appendix C, Figure 29, Double Word Program Flowchart and Pseudo Code, for the flow-chart for using the Double Word Program command.

Quadruple Word Program Command

The Quadruple Word Program command improves the programming throughput by writing a page of four adjacent words in parallel. The four words must differ only for the addresses A0 and A1.

Programming should not be attempted when V_{PPF} is not at V_{PPH} . The command can be executed if V_{PPF} is below V_{PPH} but the result is not guaranteed.

Five bus write cycles are necessary to issue the Quadruple Word Program command.

- The first bus cycle sets up the Double Word Program Command.
- The second bus cycle latches the Address and the Data of the first word to be written.
- The third bus cycle latches the Address and the Data of the second word to be written.
- The fourth bus cycle latches the Address and the Data of the third word to be written.
- The fifth bus cycle latches the Address and the Data of the fourth word to be written and starts the Program/Erase Controller.

Read operations to the bank being programmed output the Status Register content after the programming has started.

Programming aborts if Reset goes to $V_{\rm IL}$. As data integrity cannot be guaranteed when the program operation is aborted, the memory locations must be reprogrammed.

During Quadruple Word Program operations the bank being programmed will only accept the Read Array, Read Status Register, Read Electronic Signature and Read CFI Query command, all other commands will be ignored.

Dual operations are not supported during Quadruple Word Program operations and it is not recommended to suspend a Quadruple Word Program operation. Typical Program times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.

See Appendix C, Figure 30, Quadruple Word Program Flowchart and Pseudo Code, for the flow-chart for using the Quadruple Word Program command

Enhanced Factory Program Command

The Enhanced Factory Program command can be used to program large streams of data within any one block. It greatly reduces the total programming time when a large number of Words are written to a block at any one time.

The use of the Enhanced Factory Program command requires certain operating conditions.

- V_{PPF} must be set to V_{PPH}
- V_{DD} must be within operating range
- Ambient temperature, T_A must be 25°C ± 5°C
- The targeted block must be unlocked

Dual operations are not supported during the Enhanced Factory Program operation and the command cannot be suspended.

For optimum performance the Enhanced Factory Program commands should be limited to a maximum of 10 program/erase cycles per block. If this

4

limit is exceeded the internal algorithm will continue to work properly but some degradation in performance is possible. Typical Program times are given in Table 14.

The Enhanced Factory Program command has four phases: the Setup Phase, the Program Phase to program the data to the memory, the Verify Phase to check that the data has been correctly programmed and reprogram if necessary and the Exit Phase. Refer to Table 7, Enhanced Factory Program Command and Figure 36, Enhanced Factory Program Flowchart.

Setup Phase. The Enhanced Factory Program command requires two Bus Write operations to initiate the command.

- The first bus cycle sets up the Enhanced Factory Program command.
- The second bus cycle confirms the command.

The Status Register P/E.C. Bit 7 should be read to check that the P/E.C. is ready. After the confirm command is issued, read operations output the Status Register data. The read Status Register command must not be issued as it will be interpreted as data to program.

Program Phase. The Program Phase requires n+1 cycles, where n is the number of Words (refer to Table 7, Enhanced Factory Program Command and Figure 36, Enhanced Factory Program Flowchart).

Three successive steps are required to issue and execute the Program Phase of the command.

- Use one Bus Write operation to latch the Start Address and the first Word to be programmed. The Status Register Bank Write Status bit SR0 should be read to check that the P/E.C. is ready for the next Word.
- 2. Each subsequent Word to be programmed is latched with a new Bus Write operation. The address can either remain the Start Address, in which case the P/E.C. increments the address location or the address can be incremented in which case the P/E.C. jumps to the new address. If any address that is not in the same block as the Start Address is given with data FFFFh, the Program Phase terminates and the Verify Phase begins. The Status Register bit SR0 should be read between each Bus Write cycle to check that the P/E.C. is ready for the next Word.
- Finally, after all Words have been programmed, write one Bus Write operation with data FFFFh to any address outside the block containing the Start Address, to terminate the programming phase. If the data is not FFFFh, the command is ignored.

The memory is now set to enter the Verify Phase.

Verify Phase. The Verify Phase is similar to the Program Phase in that all Words must be resent to the memory for them to be checked against the programmed data. The Program/Erase Controller checks the stream of data with the data that was programmed in the Program Phase and reprograms the memory location if necessary.

Three successive steps are required to execute the Verify Phase of the command.

- Use one Bus Write operation to latch the Start Address and the first Word, to be verified. The Status Register bit SR0 should be read to check that the Program/Erase Controller is ready for the next Word.
- 2. Each subsequent Word to be verified is latched with a new Bus Write operation. The Words must be written in the same order as in the Program Phase. The address can remain the Start Address or be incremented. If any address that is not in the same block as the Start Address is given, the Verify Phase terminates. Status Register bit SR0 should be read to check that the P/E.C. is ready for the next Word.
- Finally, after all Words have been verified, write one Bus Write operation with data FFFFh to any address outside the block containing the Start Address, to terminate the Verify Phase.

If the Verify Phase is successfully completed the memory returns to the Read mode. If the Program/ Erase Controller fails to reprogram a given location, the error will be signaled in the Status Register.

Exit Phase. Status Register P/E.C. bit SR7 set to '1' indicates that the device has returned to Read mode. A full Status Register check should be done to ensure that the block has been successfully programmed. See the section on the Status Register for more details.

Quadruple Enhanced Factory Program Command

The Quadruple Enhanced Factory Program command can be used to program one or more pages of four adjacent words in parallel. The four words must differ only for the addresses A0 and A1. V_{PPF} must be set to V_{PPH} during Quadruple Enhanced Factory Program.

It has four phases: the Setup Phase, the Load Phase where the data is loaded into the buffer, the combined Program and Verify Phase where the loaded data is programmed to the memory and then automatically checked and reprogrammed if necessary and the Exit Phase. Unlike the Enhanced Factory Program it is not necessary to resubmit the data for the Verify Phase. The Load Phase and the Program and Verify Phase can be repeated to program any number of pages within the block.

Setup Phase. The Quadruple Enhanced Factory Program command requires one Bus Write operation to initiate the load phase. After the setup command is issued, read operations output the Status Register data. The Read Status Register command must not be issued as it will be interpreted as data to program.

Load Phase. The Load Phase requires 4 cycles to load the data (refer to Table 7, Factory Program Commands and Figure 37, Quadruple Enhanced Factory Program Flowchart). Once the first Word of each Page is written it is impossible to exit the Load phase until all four Words have been written.

Two successive steps are required to issue and execute the Load Phase of the Quadruple Enhanced Factory Program command.

- 1. Use one Bus Write operation to latch the Start Address and the first Word of the first Page to be programmed. For subsequent Pages the first Word address can remain the Start Address (in which case the next Page is programmed) or can be any address in the same block. If any address is given that is not in the same block as the Start Address, the device enters the Exit Phase. For the first Load Phase Status Register bit SR7 should be read after the first Word has been issued to check that the command has been accepted (bit 7 set to '0'). This check is not required for subsequent Load Phases. Status Register bit SR0 should be read to check that the P/E.C. is ready for the next Word.
- 2. Each subsequent Word to be programmed is latched with a new Bus Write operation. The address is only checked for the first Word of each Page as the order of the Words to be programmed is fixed. The Status Register bit SR0 should be read between each Bus Write

cycle to check that the P/E.C. is ready for the next Word

The memory is now set to enter the Program and Verify Phase.

Program and Verify Phase. In the Program and Verify Phase the four Words that were loaded in the Load Phase are programmed in the memory array and then verified by the Program/Erase Controller. If any errors are found the Program/Erase Controller reprograms the location. During this phase the Status Register shows that the Program/Erase Controller is busy, Status Register bit SR7 set to '0', and that the device is not waiting for new data, Status Register bit SR0 set to '1'. When Status Register bit SR0 is set to '0' the Program and Verify phase has terminated.

Once the Verify Phase has successfully completed subsequent pages in the same block can be loaded and programmed. The device returns to the beginning of the Load Phase by issuing one Bus Write operation to latch the Address and the first of the four new Words to be programmed.

Exit Phase. Finally, after all the pages have been programmed, write one Bus Write operation with data FFFFh to any address outside the block containing the Start Address, to terminate the Load and Program and Verify Phases.

If the Program and Verify Phase has successfully completed the memory returns to Read mode. If the P/E.C. fails to program and reprogram a given location, the error will be signaled in the Status Register.

Status Register bit SR7 set to '1' and bit 0 set to '0' indicate that the device has returned to Read mode. A full Status Register check should be done to ensure that the block has been successfully programmed. See the section on the Status Register for more details.

M36WT864TF, M36WT864BF

Table 7. Flash Factory Program Commands

	Phase	Š				В	us Write	Operat	io	ns			
Command		Cycles	1st		2nd		3rd			Fina	-1 Fi		nal
		0	Add	Data	Add	Data	Add	Data		Add	Data	Add	Data
Double Word	Double Word Program ⁽⁴⁾		BKA	35h	WA1	PD1	WA2	PD2					
Quadruple Word Program ⁽⁵⁾		5	ВКА	56h	WA1	PD1	WA2	PD2		WA3	PD3	WA4	PD4
Enhanced Factory Program	Setup, Program	2 +n +1	ВКА	30h	ВА	D0h	WA1 ⁽²⁾	PD1		WAn ⁽³⁾	PAn	NOT WA1 ⁽²⁾	FFFFh
(6)	Verify, Exit	n +1	WA1 ⁽²⁾	PD1	WA2 ⁽³⁾	PD2	WA3 ⁽³⁾	PD3		WAn ⁽³⁾	PAn	NOT WA1 ⁽²⁾	FFFFh
	Setup, first Load	5	ВКА	75h	WA1 ⁽²⁾	PD1	WA2 ⁽⁷⁾	PD2		WA3 ⁽⁷⁾	PD3	WA4 ⁽⁷⁾	PD4
Quadruple	First Program & Verify						Auto	matic					
Enhanced Factory Program	Subsequent Loads	4	WA1i (2)	PD1i	WA2i (7)	PD2i	WA3i (7)	PD3i				WA4i (7)	PD4i
(5,6)	Subsequent Program & Verify			Automatic									
	Exit	1	NOT WA1 (2)	FFFFh									

Note: 1. WA=Word Address in targeted bank, BKA= Bank Address, PD=Program Data, BA=Block Address.

2. WA1 is the Start Address. NOT WA1 is any address that is not in the same block as WA1.

- 3. Address can remain Starting Address WA1 or be incremented.
- 4. Word Addresses 1 and 2 must be consecutive Addresses differing only for A0.
- 5. Word Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.
- 6. A Bus Read must be done between each Write cycle where the data is programmed or verified to read the Status Register and check that the memory is ready to accept the next data. n = number of Words, i = number of Pages to be programmed.
- Address is only checked for the first Word of each Page as the order to program the Words in each page is fixed so subsequent Words in each Page can be written to any address.

FLASH STATUS REGISTER

The Flash memory contains a Status Register which provides information on the current or previous Program or Erase operations. Issue a Read Status Register command to read the contents of the Status Register, refer to Read Status Register Command section for more details. To output the contents, the Status Register is latched and updated on the falling edge of the Chip Enable or Output Enable signals and can be read until Chip Enable or Output Enable returns to VIH. The Status Register can only be read using single asynchronous or single synchronous reads. Bus Read operations from any address within the bank, always read the Status Register during Program and Erase operations.

The various bits convey information about the status and any errors of the operation. Bits SR7, SR6, SR2 and SR0 give information on the status of the device and are set and reset by the device. Bits SR5, SR4, SR3 and SR1 give information on errors, they are set by the device but must be reset by issuing a Clear Status Register command or a hardware reset. If an error bit is set to '1' the Status Register should be reset before issuing another command. SR7 to SR1 refer to the status of the device while SR0 refers to the status of the addressed bank.

The bits in the Status Register are summarized in Table 8, Status Register Bits. Refer to Table 8 in conjunction with the following text descriptions.

Program/Erase Controller Status Bit (SR7).

The Program/Erase Controller Status bit indicates whether the Program/Erase Controller is active or inactive in any bank. When the Program/Erase Controller Status bit is Low (set to '0'), the Program/Erase Controller is active; when the bit is High (set to '1'), the Program/Erase Controller is inactive, and the device is ready to process a new command.

The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller pauses. After the Program/Erase Controller pauses the bit is High.

During Program, Erase, operations the Program/ Erase Controller Status bit can be polled to find the end of the operation. Other bits in the Status Register should not be tested until the Program/Erase Controller completes the operation and the bit is High.

After the Program/Erase Controller completes its operation the Erase Status, Program Status, V_{PPF} Status and Block Lock Status bits should be tested for errors.

Erase Suspend Status Bit (SR6). The Erase Suspend Status bit indicates that an Erase opera-

tion has been suspended or is going to be suspended in the addressed block. When the Erase Suspend Status bit is High (set to '1'), a Program/Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command.

The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). SR7 is set within the Erase Suspend Latency time of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode.

When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low.

Erase Status Bit (SR5). The Erase Status bit can be used to identify if the memory has failed to verify that the block or bank has erased correctly. When the Erase Status bit is High (set to '1'), the Program/Erase Controller has applied the maximum number of pulses to the block or bank and still failed to verify that it has erased correctly. The Erase Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).

Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail.

Program Status Bit (SR4). The Program Status bit is used to identify a Program failure. When the Program Status bit is High (set to '1'), the Program/Erase Controller has applied the maximum number of pulses to the byte and still failed to verify that it has programmed correctly. The Program Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).

Once set High, the Program Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail.

VPPF Status Bit (SR3). The VPPF Status bit can be used to identify an invalid voltage on the VPPF pin during Program and Erase operations. The VPPF pin is only sampled at the beginning of a Program or Erase operation. Indeterminate results can occur if VPPF becomes invalid during an operation.

When the V_{PPF} Status bit is Low (set to '0'), the voltage on the V_{PPF} pin was sampled at a valid voltage; when the V_{PPF} Status bit is High (set to '1'), the V_{PPF} pin has a voltage that is below the

477

V_{PPF} Lockout Voltage, V_{PPLK}, the memory is protected and Program and Erase operations cannot be performed.

Once set High, the V_{PPF} Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail.

Program Suspend Status Bit (SR2). The Program Suspend Status bit indicates that a Program operation has been suspended in the addressed block. When the Program Suspend Status bit is High (set to '1'), a Program/Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command. The Program Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). SR2 is set within the Program Suspend Latency time of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode.

When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low.

Block Protection Status Bit (SR1). The Block Protection Status bit can be used to identify if a Program or Block Erase operation has tried to modify the contents of a locked block.

When the Block Protection Status bit is High (set to '1'), a Program or Erase operation has been attempted on a locked block.

Once set High, the Block Protection Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail.

Bank Write/Multiple Word Program Status Bit (SR0). The Bank Write Status bit indicates whether the addressed bank is programming or erasing. In Enhanced Factory Program mode the Multiple Word Program bit shows if a Word has finished programming or verifying depending on the phase. The Bank Write Status bit should only be considered valid when the Program/Erase Controller Status SR7 is Low (set to '0').

When both the Program/Erase Controller Status bit and the Bank Write Status bit are Low (set to '0'), the addressed bank is executing a Program or Erase operation. When the Program/Erase Controller Status bit is Low (set to '0') and the Bank Write Status bit is High (set to '1'), a Program or Erase operation is being executed in a bank other than the one being addressed.

In Enhanced Factory Program mode if Multiple Word Program Status bit is Low (set to '0'), the device is ready for the next Word, if the Multiple Word Program Status bit is High (set to '1') the device is not ready for the next Word.

Note: Refer to Appendix C, Flowcharts and Pseudo Codes, for using the Status Register.

Table 8. Flash Status Register Bits

Bit	Name	Туре	Logic Level	Definition			
SR7	D/E C Status	Status	'1'	Ready			
SK/	SR7 P/E.C. Status		'0'	Busy			
SR6	Erase Suspend Status	Status	'1'	Erase Sus	pended		
SNO	Erase Suspend Status	Status	'0'	Erase In p	rogress or Completed		
SR5	Erase Status	Error	'1'	Erase Error			
313	Liase Status	LIIOI	'0'	Erase Suc	cess		
SR4	Program Status	Error	'1'	Program Error			
31.4	Flogram Status	EIIOI	'0'	Program S	Success		
ODO V Status		_	'1'	V _{PPF} Invalid, Abort			
SR3	V _{PPF} Status	Error	'0'	V _{PPF} OK			
CDO	SR2 Program Suspend Status S		'1'	Program Suspended			
SKZ			'0'	Program In Progress or Completed			
SR1	SR1 Block Protection Status		'1'	Program/Erase on protected Block, Abort			
SKI	BIOCK Protection Status	Error	'0'	No operation to protected blocks			
	Bank Write Status	Status	'0'	SR7 = '0'	Program or erase operation in addressed bank		
				SR7 = '1'	No Program or erase operation in the device		
			'1'	SR7 = '0'	Program or erase operation in a bank other than the addressed bank		
SR0				SR7 = '1'	Not Allowed		
	Multiple Word Program Status (Enhanced Factory Program mode)	Status -	'1'	SR7 = '0'	the device is NOT ready for the next word		
				SR7 = '1'	Not Allowed		
			'0'	SR7 = '0'	the device is ready for the next Word		
				SR7 = '1'	the device is exiting from EFP		

Note: Logic level '1' is High, '0' is Low.

FLASH CONFIGURATION REGISTER

The Flash memory contains a Configuration Register which is used to configure the type of bus access that the memory will perform. Refer to Read Modes section for details on read operations.

The Configuration Register is set through the Command Interface. After a Reset or Power-Up the device is configured for asynchronous page read (CR15 = 1). The Configuration Register bits are described in Table 9. They specify the selection of the burst length, burst type, burst X latency and the Read operation. Refer to Figures 7 and 8 for examples of synchronous burst configurations.

Read Select Bit (CR15)

The Read Select bit, CR15, is used to switch between asynchronous and synchronous Bus Read operations. When the Read Select bit is set to '1', read operations are asynchronous; when the Read Select bit is set to '0', read operations are synchronous. Synchronous Burst Read is supported in both parameter and main blocks and can be performed across banks.

On reset or power-up the Read Select bit is set to'1' for asynchronous access.

X-Latency Bits (CR13-CR11)

The X-Latency bits are used during Synchronous Read operations to set the number of clock cycles between the address being latched and the first data becoming available. For correct operation the X-Latency bits can only assume the values in Table 9, Configuration Register.

The correspondence between X-Latency settings and the maximum sustainable frequency must be calculated taking into account some system parameters. Two conditions must be satisfied:

 Depending on whether t_{AVK_CPU} or t_{DELAY} is supplied either one of the following two equations must be satisfied:

$$(n + 1)$$
 $t_K \ge t_{ACC} - t_{AVK_CPU} + t_{QVK_CPU}$
 $(n + 2)$ $t_K \ge t_{ACC} + t_{DELAY} + t_{QVK_CPU}$

2. and also

$$t_K > t_{KQV} + t_{QVK_CPU}$$

where

n is the chosen X-Latency configuration code $t_{\mbox{\scriptsize K}}$ is the clock period

 t_{AVK_CPU} is clock to address valid, \overline{L} Low, or \overline{E} Low, whichever occurs last

 t_{DELAY} is address valid, \overline{L} Low, or \overline{E} Low to clock, whichever occurs last

 $t_{\mbox{\scriptsize QVK_CPU}}$ is the data setup time required by the system CPU,

tKOV is the clock to data valid time

t_{ACC} is the random access time of the device.

Refer to Figure 7, X-Latency and Data Output Configuration Example.

Wait Polarity Bit (CR10)

In synchronous burst mode the Wait signal indicates whether the output data are valid or a WAIT state must be inserted. The Wait Polarity bit is used to set the polarity of the Wait signal. When the Wait Polarity bit is set to '0' the Wait signal is active Low. When the Wait Polarity bit is set to '1' the Wait signal is active High (default).

Data Output Configuration Bit (CR9)

The Data Output Configuration bit determines whether the output remains valid for one or two clock cycles. When the Data Output Configuration Bit is '0' the output data is valid for one clock cycle, when the Data Output Configuration Bit is '1' the output data is valid for two clock cycles.

The Data Output Configuration depends on the condition:

 \blacksquare $t_K > t_{KQV} + t_{QVK_CPU}$

where t_K is the clock period, t_{QVK_CPU} is the data setup time required by the system CPU and t_{KQV} is the clock to data valid time. If this condition is not satisfied, the Data Output Configuration bit should be set to '1' (two clock cycles). Refer to Figure 7, X-Latency and Data Output Configuration Example.

Wait Configuration Bit (CR8)

In burst mode the Wait bit controls the timing of the Wait output pin, WAIT. When the Wait bit is '0' the Wait output pin is asserted during the wait state. When the Wait bit is '1' (default) the Wait output pin is asserted one clock cycle before the wait state.

WAIT is asserted during a continuous burst and also during a 4 or 8 burst length if no-wrap configuration is selected. WAIT is not asserted during asynchronous reads, single synchronous reads or during latency in synchronous reads.

Burst Type Bit (CR7)

The Burst Type bit is used to configure the sequence of addresses read as sequential or interleaved. When the Burst Type bit is '0' the memory outputs from interleaved addresses; when the Burst Type bit is '1' (default) the memory outputs from sequential addresses. See Tables 10, Burst Type Definition, for the sequence of addresses output from a given starting address in each mode.

Valid Clock Edge Bit (CR6)

The Valid Clock Edge bit, CR6, is used to configure the active edge of the Clock, K, during Synchronous Burst Read operations. When the Valid Clock Edge bit is '0' the falling edge of the Clock is

the active edge; when the Valid Clock Edge bit is '1' the rising edge of the Clock is active.

Wrap Burst Bit (CR3)

The burst reads can be confined inside the 4 or 8 Word boundary (wrap) or overcome the boundary (no wrap). The Wrap Burst bit is used to select between wrap and no wrap. When the Wrap Burst bit is set to '0' the burst read wraps; when it is set to '1' the burst read does not wrap.

Burst length Bits (CR2-CR0)

The Burst Length bits set the number of Words to be output during a Synchronous Burst Read operation as result of a single address latch cycle. They can be set for 4 words, 8 words or continuous burst, where all the words are read sequentially.

In continuous burst mode the burst sequence can cross bank boundaries.

In continuous burst mode or in 4, 8 words no-wrap, depending on the starting address, the device asserts the WAIT output to indicate that a delay is necessary before the data is output.

If the starting address is aligned to a 4 word boundary no wait states are needed and the WAIT output is not asserted.

If the starting address is shifted by 1,2 or 3 positions from the four word boundary, WAIT will be asserted for 1, 2 or 3 clock cycles when the burst sequence crosses the first 64 word boundary, to indicate that the device needs an internal delay to read the successive words in the array. WAIT will be asserted only once during a continuous burst access. See also Table 10, Burst Type Definition.

CR14, CR5 and CR4 are reserved for future use.

M36WT864TF, M36WT864BF

Table 9. Flash Configuration Register

Bit	Description	Value	/alue Description				
CD45	Dood Coloct	0	Synchronous Read				
CR15	Read Select	1	Asynchronous Read (Default at power-on)				
CR14			Reserved				
		010	2 clock latency				
		011	3 clock latency				
CR13-CR11	V I atanav	100	4 clock latency				
CR13-CR11	X-Latency	101	5 clock latency				
		111	Reserved				
		Other configurations reserved					
CR10	Wait Polarity	0	WAIT is active Low				
CKIU		1	WAIT is active high (default)				
CR9	Data Output Configuration	0	Data held for one clock cycle				
CK9		1	Data held for two clock cycles				
CR8	Wait Configuration	0	WAIT is active during wait state				
CINO		1	WAIT is active one data cycle before wait state (default)				
CR7	Burst Type	0	Interleaved				
CKI	Burst Type	1	Sequential (default)				
CR6	Valid Clock Edge	0	Falling Clock edge				
CKO	Valid Clock Edge	1	Rising Clock edge				
CR5-CR4			Reserved				
CR3	Wrap Burst	0	Wrap				
CNS		1	No Wrap				
		001	4 words				
CR2-CR0	Burst Length	010	8 words				
		111	Continuous (CR7 must be set to '1')				

Table 10. Burst Type Definition

Mode	Start Address	4 Word	s	8 Word	Continuous Burst			
		Sequential	Interleaved	Sequential	Interleaved			
	0	0-1-2-3	0-1-2-3	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6		
	1	1-2-3-0	1-0-3-2	1-2-3-4-5-6-7-0	1-0-3-2-5-4-7-6	1-2-3-4-5-6-7		
	2	2-3-0-1	2-3-0-1	2-3-4-5-6-7-0-1	2-3-0-1-6-7-4-5	2-3-4-5-6-7-8		
	3	3-0-1-2	3-2-1-0	3-4-5-6-7-0-1-2	3-2-1-0-7-6-5-4	3-4-5-6-7-8-9		
Wrap	7	7-4-5-6	7-6-5-4	7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0	7-8-9-10-11-12-13		
>								
	60					60-61-62-63-64-65-66		
	61					61-62-63-WAIT-64-65-66		
	62					62-63-WAIT-WAIT-64-65-66		
	63					63-WAIT-WAIT-WAIT-64-65- 66		
		Sequential	Interleaved	Sequential	Interleaved			
	0	0-1-2-3		0-1-2-3-4-5-6-7				
	1	1-2-3-4		1-2-3-4-5-6-7-8				
	2	2-3-4-5		2-3-4-5-6-7-8-9				
	3	3-4-5-6		3-4-5-6-7-8-9-10				
	7	7-8-9-10		7-8-9-10-11-12-13-14		Same as for Wrap		
No-wrap						(Wrap /No Wrap has no effect on		
Ň	60	60-61-62-63		60-61-62-63-64-65-66- 67		Continuous Burst)		
	61	61-62-63-WAIT-64		61-62-63-WAIT-64-65- 66-67-68				
	62	62-63-WAIT- WAIT-64-65		62-63-WAIT-WAIT-64- 65-66-67-68-69				
·	63	63-WAIT-WAIT- WAIT-64-65-66		63-WAIT-WAIT-WAIT- 64-65-66-67-68-69-70				

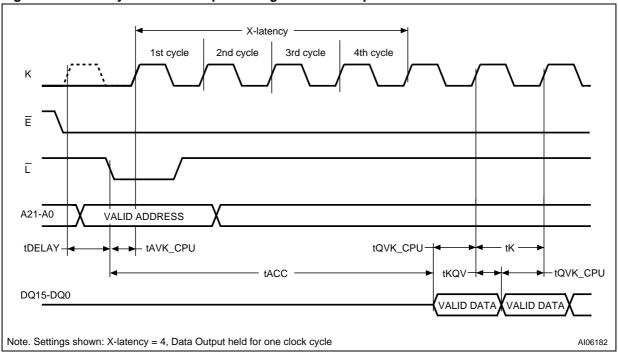
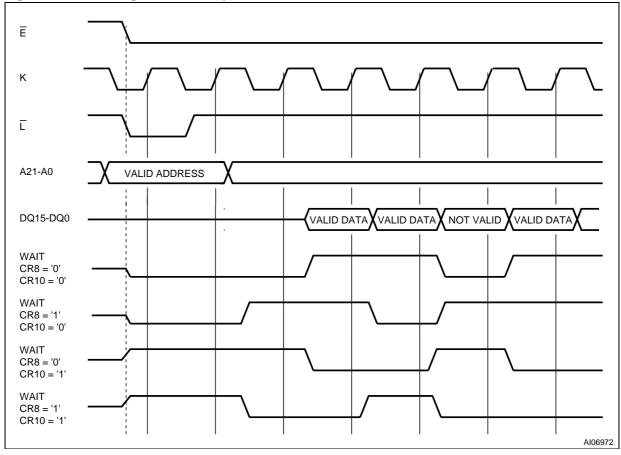



Figure 8. Wait Configuration Example

FLASH READ MODES

Flash Read operations can be performed in two different ways depending on the settings in the Configuration Register. If the clock signal is 'don't care' for the data output, the read operation is Asynchronous; if the data output is synchronized with clock, the read operation is Synchronous.

The Read mode and data output format are determined by the Configuration Register. (See Configuration Register section for details). All banks supports both asynchronous and synchronous read operations. The Multiple Bank architecture allows read operations in one bank, while write operations are being executed in another (see Tables 11 and 12).

Asynchronous Read Mode

In Asynchronous Read operations the clock signal is 'don't care'. The device outputs the data corresponding to the address latched, that is the memory array, Status Register, Common Flash Interface or Electronic Signature depending on the command issued. CR15 in the Configuration Register must be set to '1' for Asynchronous operations

In Asynchronous Read mode a Page of data is internally read and stored in a Page Buffer. The Page has a size of 4 Words and is addressed by A0 and A1 address inputs. The address inputs A0 and A1 are not gated by Latch Enable in Asynchronous Read mode.

The first read operation within the Page has a longer access time (T_{acc}, Random access time), subsequent reads within the same Page have much shorter access times. If the Page changes then the normal, longer timings apply again.

Asynchronous Read operations can be performed in two different ways, Asynchronous Random Access Read and Asynchronous Page Read. Only Asynchronous Page Read takes full advantage of the internal page storage so different timings are applied.

See Table 21, Asynchronous Read AC Characteristics, Figure 11, Asynchronous Random Access Read AC Waveform and Figure 12, Asynchronous Page Read AC Waveform for details.

Synchronous Burst Read Mode

In Synchronous Burst Read mode the data is output in bursts synchronized with the clock. It is possible to perform burst reads across bank boundaries.

Synchronous Burst Read mode can only be used to read the memory array. For other read operations, such as Read Status Register, Read CFI and Read Electronic Signature, Single Synchronous Read or Asynchronous Random Access Read must be used.

In Synchronous Burst Read mode the flow of the data output depends on parameters that are configured in the Configuration Register.

A burst sequence is started at the first clock edge (rising or falling depending on Valid Clock Edge bit CR6 in the Configuration Register) after the falling edge of Latch Enable. Addresses are internally incremented and after a delay of 2 to 5 clock cycles (X latency bits CR13-CR11) the corresponding data are output on each clock cycle.

The number of Words to be output during a Synchronous Burst Read operation can be configured as 4 or 8 Words or Continuous (Burst Length bits CR2-CR0). The data can be configured to remain valid for one or two clock cycles (Data Output Configuration bit CR9).

The order of the data output can be modified through the Burst Type and the Wrap Burst bits in the Configuration Register. The burst sequence may be configured to be sequential or interleaved (CR7). The burst reads can be confined inside the 4 or 8 Word boundary (Wrap) or overcome the boundary (No Wrap). If the starting address is aligned to a 4 Word Page the wrapped configuration has no impact on the output sequence. Interleaved mode is not allowed in Continuous Burst Read mode or with No Wrap sequences.

A WAIT signal may be asserted to indicate to the system that an output delay will occur. This delay will depend on the starting address of the burst sequence; the worst case delay will occur when the sequence is crossing a 64 word boundary and the starting address was at the end of a four word boundary.

WAIT is asserted during X latency and the Wait state and is only deasserted when output data are valid. In Continuous Burst Read mode a Wait state will occur when crossing the first 64 Word boundary. If the burst starting address is aligned to a 4 Word Page, the Wait state will not occur.

The WAIT signal can be configured to be active Low or active High (default) by setting CR10 in the Configuration Register. The WAIT signal is meaningful only in Synchronous Burst Read mode, in other modes, WAIT is always asserted (except for Read Array mode).

See Table 22, Synchronous Read AC Characteristics and Figure 13, Synchronous Burst Read AC Waveform for details.

Single Synchronous Read Mode

Single Synchronous Read operations are similar to Synchronous Burst Read operations except that only the first data output after the X latency is valid. Other Configuration Register parameters have no effect on Single Synchronous Read operations.

477

Synchronous Single Reads are used to read the Electronic Signature, Status Register, CFI, Block Protection Status, Configuration Register Status or Protection Register. When the addressed bank is in Read CFI, Read Status Register or Read

Electronic Signature mode, the WAIT signal is always asserted.

See Table 22, Synchronous Read AC Characteristics and Figure 14, Single Synchronous Read AC Waveform for details.

FLASH DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE

The Multiple Bank Architecture of the Flash memory provides flexibility for software developers by allowing code and data to be split with 4Mbit granularity. The Dual Operations feature simplifies the software management of the device and allows code to be executed from one bank while another bank is being programmed or erased.

The Dual operations feature means that while programming or erasing in one bank, Read operations are possible in another bank with zero latency (only one bank at a time is allowed to be in Program or Erase mode). If a Read operation is required in a bank which is programming or erasing, the Program or Erase operation can be suspended. Also if the suspended operation was Erase

then a Program command can be issued to another block, so the device can have one block in Erase Suspend mode, one programming and other banks in Read mode. Bus Read operations are allowed in another bank between setup and confirm cycles of program or erase operations. The combination of these features means that read operations are possible at any moment.

Tables 11 and 12 show the dual operations possible in other banks and in the same bank. Note that only the commonly used commands are represented in these tables. For a complete list of possible commands refer to Appendix D, Command Interface State Tables.

Table 11. Dual Operations Allowed In Other Banks

	Commands allowed in another bank									
Status of bank	Read Array	Read Status Register	Read CFI Query	Read Electronic Signature	Program	Erase	Program/ Erase Suspend	Program/ Erase Resume		
Idle	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Programming	Yes	Yes	Yes	Yes	_	_	Yes	-		
Erasing	Yes	Yes	Yes	Yes	_	_	Yes	-		
Program Suspended	Yes	Yes	Yes	Yes	_	_	-	Yes		
Erase Suspended	Yes	Yes	Yes	Yes	Yes	_	-	Yes		

Table 12. Dual Operations Allowed In Same Bank

	Commands allowed in same bank								
Status of bank	Read Array	Read Status Register	Read CFI Query	Read Electronic Signature	Program	Erase	Program/ Erase Suspend	Program/ Erase Resume	
Idle	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Programming	_(2)	Yes	Yes	Yes	_	_	Yes	_	
Erasing	_(2)	Yes	Yes	Yes	_	_	Yes	_	
Program Suspended	Yes ⁽¹⁾	Yes	Yes	Yes	_	_	-	Yes	
Erase Suspended	Yes ⁽¹⁾	Yes	Yes	Yes	Yes ⁽¹⁾	_	-	Yes	

Note: 1. Not allowed in the Block or Word that is being erased or programmed.

^{2.} The Read Array command is accepted but the data output is not guaranteed until the Program or Erase has completed.

FLASH BLOCK LOCKING

The Flash memory features an instant, individual block locking scheme that allows any block to be locked or unlocked with no latency. This locking scheme has three levels of protection.

- Lock/Unlock this first level allows softwareonly control of block locking.
- Lock-Down this second level requires hardware interaction before locking can be changed.
- VPPF ≤ VPPLK the third level offers a complete hardware protection against program and erase on all blocks.

The protection status of each block can be set to Locked, Unlocked, and Lock-Down. Table 13. defines all of the possible protection states (WP, DQ1, DQ0), and Appendix C, Figure 34, shows a flowchart for the locking operations.

Reading a Block's Lock Status

The lock status of every block can be read in the Read Electronic Signature mode of the device. To enter this mode write 90h to the device. Subsequent reads at the address specified in Table 6, will output the protection status of that block. The lock status is represented by DQ0 and DQ1. DQ0 indicates the Block Lock/Unlock status and is set by the Lock command and cleared by the Unlock command. It is also automatically set when entering Lock-Down. DQ1 indicates the Lock-Down status and is set by the Lock-Down command. It cannot be cleared by software, only by a hardware reset or power-down.

The following sections explain the operation of the locking system.

Locked State

The default status of all blocks on power-up or after a hardware reset is Locked (states (0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any program or erase operations attempted on a locked block will return an error in the Status Register. The Status of a Locked block can be changed to Unlocked or Lock-Down using the appropriate software commands. An Unlocked block can be Locked by issuing the Lock command.

Unlocked State

Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked blocks return to the Locked state after a hardware reset or when the device is powered-down. The status of an unlocked block can be changed to

Locked or Locked-Down using the appropriate software commands. A locked block can be unlocked by issuing the Unlock command.

Lock-Down State

Blocks that are Locked-Down (state (0,1,x))are protected from program and erase operations (as for Locked blocks) but their protection status cannot be changed using software commands alone. A Locked or Unlocked block can be Locked-Down by issuing the Lock-Down command. Locked-Down blocks revert to the Locked state when the device is reset or powered-down.

The Lock-Down function is dependent on the WP input pin. When WP=0 (V_{IL}), the blocks in the Lock-Down state (0,1,x) are protected from program, erase and protection status changes. When WP=1 (V_{IH}) the Lock-Down function is disabled (1,1,x) and Locked-Down blocks can be individually unlocked to the (1,1,0) state by issuing the software command, where they can be erased and programmed. These blocks can then be re-locked (1,1,1) and unlocked (1,1,0) as desired while \overline{WP} remains high. When WP is low, blocks that were previously Locked-Down return to the Lock-Down state (0,1,x) regardless of any changes made while WP was high. Device reset or power-down resets all blocks, including those in Lock-Down, to the Locked state.

Locking Operations During Erase Suspend

Changes to block lock status can be performed during an erase suspend by using the standard locking command sequences to unlock, lock or lock-down a block. This is useful in the case when another block needs to be updated while an erase operation is in progress.

To change block locking during an erase operation, first write the Erase Suspend command, then check the status register until it indicates that the erase operation has been suspended. Next write the desired Lock command sequence to a block and the lock status will be changed. After completing any desired lock, read, or program operations, resume the erase operation with the Erase Resume command.

If a block is locked or locked-down during an erase suspend of the same block, the locking status bits will be changed immediately, but when the erase is resumed, the erase operation will complete. Locking operations cannot be performed during a program suspend. Refer to Appendix, Command Interface State Table, for detailed information on which commands are valid during erase suspend.

477

Table 13. Flash Lock Status

Protectio Protection	rrent n Status ⁽¹⁾ Q1, DQ0)	Next <u>Pro</u> tection Status ⁽¹⁾ (WP, DQ1, DQ0)					
Current State	Program/Erase Allowed	After Block Lock Command	After Block Unlock Command	After Block Lock-Down Command	After WP transition		
1,0,0	yes	1,0,1	1,0,0	1,1,1	0,0,0		
1,0,1 ⁽²⁾	no	1,0,1	1,0,0	1,1,1	0,0,1		
1,1,0	yes	1,1,1	1,1,0	1,1,1	0,1,1		
1,1,1	no	1,1,1	1,1,0	1,1,1	0,1,1		
0,0,0	yes	0,0,1	0,0,0	0,1,1	1,0,0		
0,0,1 ⁽²⁾	no	0,0,1	0,0,0	0,1,1	1,0,1		
0,1,1	no	0,1,1	0,1,1	0,1,1	1,1,1 or 1,1,0 ⁽³⁾		

Note: 1. The lock status is defined by the write protect pin and by DQ1 ('1' for a locked-down block) and DQ0 ('1' for a locked block) as read in the Read Electronic Signature command with A1 = V_{IH} and A0 = V_{IL}.

2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.

3. A WP transition to V_{IH} on a locked block will restore the previous DQ0 value, giving a 111 or 110.

FLASH PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES

The Program and Erase times and the number of Program/ Erase cycles per block are shown in Table 14. In the Flash memory the maximum number

of Program/ Erase cycles depends on the voltage supply used.

Table 14. Flash Program, Erase Times and Endurance Cycles

	Parameter	Condition	Min	Тур	Typical after 100k W/E Cycles	Max	Unit
	Parameter Block (4 KWord) Erase ⁽²⁾)		0.3	1	2.5	S
	Main Block (32 KWord) Erase	Preprogrammed		0.8	3	4	S
	I Walli Block (32 KWold) Elase	Not Preprogrammed		1.1		4	s
	Bank (4Mbit) Erase	Preprogrammed		3			s
	Dank (HWDit) Liase	Not Preprogrammed		4.5			s
- VDI	Parameter Block (4 KWord) Progran	n ⁽³⁾		40			ms
VPPF = VDD	Main Block (32 KWord) Program ⁽³⁾			300			ms
	Word Program (3)			10	10	100	μs
	Program Suspend Latency			5		10	μs
	Erase Suspend Latency		5		20	μs	
	Program/Erase Cycles (per Block)	Main Blocks	100,000				cycles
	Program/Liase Cycles (per block)	Parameter Blocks	100,000				cycles
	Parameter Block (4 KWord) Erase			0.3		2.5	s
	Main Block (32 KWord) Erase			0.9		4	s
	Bank (4Mbit) Erase			3.5			S
	Bank (4Mbit) Program (Quad-Enhar	nced Factory Program)		t.b.a. ⁽⁴⁾			s
ĭ	4Mbit Program	Quadruple Word		510			ms
VррF = Vррн	Word/ Double Word/ Quadruple Word/	rd Program ⁽³⁾		8		100	μs
PPF:	Parameter Block (4 KWord)	Quadruple Word		8			ms
>	Program ⁽³⁾	Word		32			ms
	Main Block (32 KWord) Program ⁽³⁾	Quadruple Word		64			ms
	Wain Block (32 KWord) Programs	Word		256			ms
	Program/Erase Cycles (per Block)	Main Blocks				1000	cycles
	1. Togranii Erado Oydico (por bidok)	Parameter Blocks				2500	cycles

Note: 1. T_A = -40 to 85°C; V_{DD} = 1.65V to 2.2V; V_{DDQ} = 1.65V to 3.3V.

2. The difference between Preprogrammed and not preprogrammed is not significant (<30ms).

^{3.} Excludes the time needed to execute the command sequence.

^{4.} t.b.a. = to be announced

SRAM OPERATIONS

There are five standard operations that control the SRAM component. These are Bus Read, Bus Write, Standby/Power-down, Data Retention and Output Disable. A summary is shown in Table 2, Main Operation Modes

Read. Read operations are used to output the contents of the SRAM Array. The data is output either by x8 (DQ0-DQ7) or x16 (DQ0-DQ15) depending on which of the LBS and UBS signals are enabled. The SRAM is in Read mode whenever Chip Enable, E2S, and Write Enable, WS, are at V_{IH} , and Output Enable, GS, and Chip Enable E1S are at V_{IL} .

Valid data will be available on the output pins after a time of t_{AVQV} after the last stable address. If the Chip Enable or Output Enable access times are not met, data access will be measured from the limiting parameter (t_{ELQV} , t_{EHQV} , or t_{GLQV}) rather than the address. Data out may be indeterminate at t_{ELQX} , t_{GLQX} and t_{BLQX} , but data lines will always be valid at t_{AVQV} (see Table 26, Figures 19 and 20).

Write. Write operations are used to write data to the SRAM. The <u>SRAM</u> is in Write mode <u>whenever</u> Write Enable, WS, and Chip Enable, E1S, are at V_{II}, and Chip Enable, E2S, is at V_{IH}.

Either the Chip Enable input, E1S or the Write Enable input, WS, must be deasserted during address transitions for subsequent write cycles.

A Write operation is initiated when E1S is at V_{IL} , E2S is at V_{IH} and WS is at V_{IL} . When UBS or LBS are Low, the data is latched on the falling edge of E1S, or WS, whichever occurs first. When UBS or

LBS are <u>High</u>, the data is latched on the falling edge of UBS, or LBS , whichever occurs first.

The Write cycle is terminated on the rising edge of E1S, WS, UBS or LBS, whichever occurs first.

If the Output is enabled ($\overline{\text{E1S}} = V_{IL}$, $\text{E2S} = V_{IH}$, $\text{GS} = V_{IL}$ and UBS=LBS= V_{IL}), then WS will return the outputs to high impedance within t_{WLQZ} of its falling edge. Care must be taken to avoid bus contention in this type of operation. The Data input must be valid for t_{DVWH} before the rising edge of $\overline{\text{Write}}$ Enable, for t_{DVEH} before the rising edge of $\overline{\text{E1S}}$ or for t_{DVBH} before the rising edge of $\overline{\text{UBS}}$ /LBS, whichever occurs first, and remain valid for t_{WHDX} , t_{EHDX} and t_{BHDX} respectively.

(see Table 27, Figure 22, 23 and 24).

Standby/Power-Down. The SRAM component has a chip enabled power-down feature which invokes an automatic standby mode (see Table 26, Figure 19). The SRAM is in Standby mode whenever either Chip Enable is deasserted, $\overline{\text{E1S}}$ at V_{IH} or E2S at V_{IL} .

Data Retention. The SRAM data retention performances as V_{DDS} go down to V_{DR} are <u>described</u> in Table 28 and Figures 25 and 26. In E1S controlled data retention mode, th<u>e minimum</u> standby current mode is entered when E1S \geq $V_{DDS}-0.2V$ and E2S \leq 0.2V or E2S \geq $V_{DDS}-0.2V$. In E2S controlled data retention mode, minimum standby current mode is entered when E2S \leq 0.2V.

Output Disable. The SRAM is in the output disable state when GS and WS are both at V_{IH} , refer to Table 2 for more details.

MAXIMUM RATING

Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im-

plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 15. Absolute Maximum Ratings

		Va	lue	
Symbol	Parameter	Min	Max	Unit
T _A	Ambient Operating Temperature	-40	85	°C
T _{BIAS}	Temperature Under Bias	-40	125	°C
T _{STG}	Storage Temperature	-65	155	°C
V _{IO}	Input or Output Voltage	-0.5	V _{DDQF} +0.6	V
V _{DDF}	Supply Voltage	-0.2	2.45	V
V _{DDQF} / V _{DDS}	Input/Output Supply Voltage	-0.2	3.3	V
V _{PPF}	Program Voltage	-0.2	14	V
Io	Output Short Circuit Current		100	mA
t _{VPPFH}	Time for V _{PPF} at V _{PPFH}		100	hours

477

DC AND AC PARAMETERS

This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement

Conditions summarized in Table 16, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.

Table 16. Operating and AC Measurement Conditions

	SR	AM	Flash I	Memory		
Parameter	7	70	70/ 8	Units		
	Min	Max	Min	Max		
V _{DD} Supply Voltage	-	-	1.65	2.2	V	
V _{DDQ} Supply Voltage	2.7	3.3	2.7	3.3	V	
V _{PPF} Supply Voltage (Factory environment)			11.4	12.6	V	
V _{PPF} Supply Voltage (Application environment)			-0.4	V _{DDQ} +0 .4	V	
Ambient Operating Temperature	- 40	85	- 40	85	°C	
Load Capacitance (C _L)	3	30	3	30	pF	
Input Rise and Fall Times		2		5	ns	
Input Pulse Voltages	0 to	0 to V _{DDF}		0 to V _{DDQ}		
Input and Output Timing Ref. Voltages	V _{DI}	V _{DDF} /2		V _{DDQ} /2		

Figure 9. AC Measurement I/O Waveform

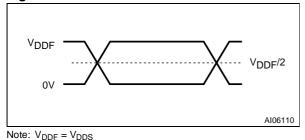
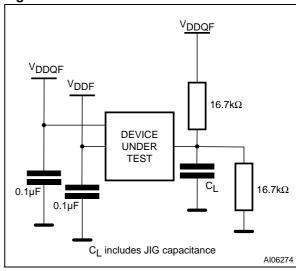



Figure 10. AC Measurement Load Circuit

Table 17. Device Capacitance

Cumbal	Parameter	Test Condition	Min	Max	Unit	
Symbol	Parameter	rest Condition	IVIIII	IVIAX	Unit	
C _{IN} Input Capacitance		$V_{IN} = 0V$	6	8	pF	
C _{OUT}	Output Capacitance	V _{OUT} = 0V	8	12	pF	

Note: Sampled only, not 100% tested.

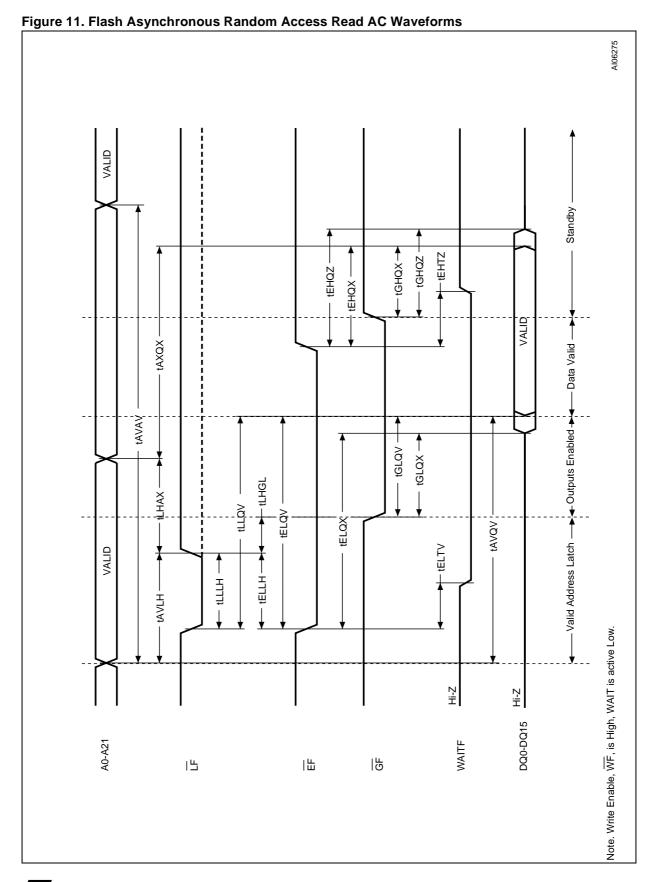
Table 18. Flash DC Characteristics - Currents

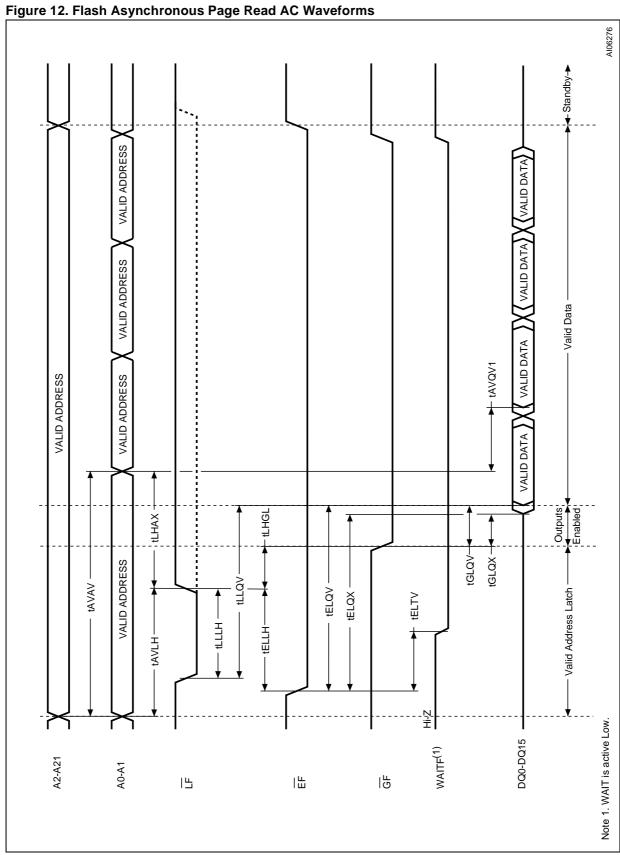
Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
ILI	Input Leakage Current	$0V \le V_{IN} \le V_{DDQ}$			±1	μA
I _{LO}	Output Leakage Current	$0V \le V_{OUT} \le V_{DDQ}$			±1	μΑ
	Supply Current Asynchronous Read (f=6MHz)	$\overline{E} = V_{IL}, \overline{G} = V_{IH}$		3	6	mA
		4 Word		6	13	mA
	Supply Current Synchronous Read (f=40MHz)	8 Word		8	14	mA
I _{DD1}	, ,	Continuous		6	10	mA
		4 Word		7	16	mA
	Supply Current Synchronous Read (f=54MHz)	8 Word		10	18	mA
	,	Continuous		13	25	mA
I _{DD2}	Supply Current (Reset)	$\overline{RP} = V_{SS} \pm 0.2V$		10	50	μA
I _{DD3}	Supply Current (Standby)	$\overline{E} = V_{DD} \pm 0.2V$		10	50	μA
I _{DD4}	Supply Current (Automatic Standby)	$\overline{E} = V_{IL}, \overline{G} = V_{IH}$		10	50	μA
	Comple Compact (Decompos)	V _{PPF} = V _{PPH}		8	15	mA
. (1)	Supply Current (Program)	V _{PPF} = V _{DD}		10	20	mA
I _{DD5} ⁽¹⁾	0 10 1/5	V _{PPF} = V _{PPH}		8	15	mA
	Supply Current (Erase)	V _{PPF} = V _{DD}		10	20	mA
(12)	Supply Current	Program/Erase in one Bank, Asynchronous Read in another Bank		13	26	mA
I _{DD6} ^(1,2)	(Dual Operations)	Program/Erase in one Bank, Synchronous Read in another Bank		16	30	mA
I _{DD7} ⁽¹⁾	Supply Current Program/ Erase Suspended (Standby)	$\overline{E} = V_{DD} \pm 0.2V$		10	50	μA
	V _{PPF} Supply Current (Program)	V _{PPF} = V _{PPH}		2	5	mA
. (1)	VPPF Supply Current (Program)	V _{PPF} = V _{DD}		0.2	5	μA
I _{PP1} ⁽¹⁾	V Comple Courset (Frees)	V _{PPF} = V _{PPH}		2	5	mA
	V _{PPF} Supply Current (Erase)	V _{PPF} = V _{DD}		0.2	5	μA
	V 000001 0 0 0 1 (D 1)	V _{PPF} = V _{PPH}		100	400	μA
I _{PP2}	V _{PPF} Supply Current (Read)	V _{PPF} ≤ V _{DD}		0.2	5	μA
I _{PP3} ⁽¹⁾	V _{PPF} Supply Current (Standby)	V _{PPF} ≤ V _{DD}		0.2	5	μA

Note: 1. Sampled only, not 100% tested.

2. V_{DD} Dual Operation current is the sum of read and program or erase currents.

Table 19. Flash DC Characteristics - Voltages


Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
VIL	Input Low Voltage		-0.5		0.4	V
V _{IH}	Input High Voltage	High Voltage V _{DDQ} -0.4			V _{DDQ} + 0.4	V
V _{OL}	Output Low Voltage	I _{OL} = 100μA			0.1	V
Voн	Output High Voltage	I _{OH} = -100μA	V _{DDQ} -0.1			V
V _{PP1}	V _{PPF} Program Voltage-Logic	Program, Erase	1	1.8	1.95	V
V _{PPH}	V _{PPF} Program Voltage Factory	Program, Erase	11.4	12	12.6	V
V _{PPLK}	Program or Erase Lockout				0.9	V
V _{LKO}	V _{DD} Lock Voltage		1			V
V _{RPH}	RP pin Extended High Voltage				3.3	V


Table 20. SRAM DC Characteristics

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
I _{DD1} (1,2)	Operating Supply Current	$V_{DDS} = 3.3V, f = 1/t_{AVAV},$ $I_{OUT} = 0mA$ 70ns				35	mA
I _{DD2} (3)	Operating Supply Current	$V_{DDS} = 3.3V, f = 1MI$ $I_{OUT} = 0mA$			4	mA	
I _{SB}	Standby Supply Current CMOS	$\begin{array}{c} V_{DDS} = 3.3 \text{V, } \underline{f} = 0 \\ \hline E1 \geq V_{DDS} - 0.2 \text{V or } \overline{E2} \leq \\ \hline LB = UB \geq V_{DDS} - 0.2 \end{array}$		1	20	μA	
I _{LI}	Input Leakage Current	$0V \le V_{IN} \le V_{DDS}$		-1		1	μΑ
I _{LO}	Output Leakage Current	0V ≤ V _{OUT} ≤ V _{DDS} ((4)	-1		1	μΑ
V _{IH}	Input High Voltage			2.2		V _{DDS} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		0.6	V
VoH	Output High Voltage	$I_{OH} = -1.0$ mA	_	2.4			V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA				0.4	V

Note: 1. Average AC current, cycling at t_{AVAV} minimum. 2. $\overline{E1} = V_{IL}$ AND E2 = V_{IH} , \overline{LB} OR/AND $\overline{UB} = V_{IL}$, $V_{IN} = V_{IL}$ OR V_{IH} . 3. $\overline{E1} \le 0.2V$ AND E2 $\ge V_{DDS}$ -0.2V, \overline{LB} OR/AND $\overline{UB} \le 0.2V$, $V_{IN} \le 0.2V$ OR $V_{IN} \ge V_{DDS}$ -0.2V.

4. Output disabled.

47/ 46/92

Table 21. Flash Asynchronous Read AC Characteristics

	Symbol	Alt	Poromotor		M36	WT864T	F/BF	Unit
	Symbol	Alt	Parameter		70	85	100	Unit
	t _{AVAV}	t _{RC}	Address Valid to Next Address Valid	Min	70 ⁽³⁾	85	100	ns
,	t _{AVQV}	tACC	Address Valid to Output Valid (Random)	Max	70 ⁽³⁾	85	100	ns
	t _{AVQV1}	t _{PAGE}	Address Valid to Output Valid (Page)	Max	20 ⁽³⁾	25	25	ns
	t _{AXQX} (1)	tон	Address Transition to Output Transition	Min	0	0	0	ns
•	t _{ELTV}		Chip Enable Low to Wait Valid	Max	14 ⁽³⁾	18	18	ns
<u>s</u>	t _{ELQV} (2)	t _{CE}	Chip Enable Low to Output Valid	Max	70 ⁽³⁾	85	100	ns
Read Timings	t _{ELQX} (1)	t _{LZ}	Chip Enable Low to Output Transition	Min	0	0	0	ns
ad Ti	tehtz		Chip Enable High to Wait Hi-Z	Max	20 ⁽³⁾	20	20	ns
Re	t _{EHQX} (1)	toH	Chip Enable High to Output Transition	Min	0	0	0	ns
•	t _{EHQZ} (1)	t _{HZ}	Chip Enable High to Output Hi-Z	Max	20 ⁽³⁾	20	20	ns
•	t _{GLQV} (2)	toE	Output Enable Low to Output Valid	Max	20	25	25	ns
•	t _{GLQX} (1)	t _{OLZ}	Output Enable Low to Output Transition	Min	0	0	0	ns
•	t _{GHQX} (1)	toH	Output Enable High to Output Transition	Min	0	0	0	ns
•	t _{GHQZ} (1)	t _{DF}	Output Enable High to Output Hi-Z	Max	20 ⁽³⁾	20	20	ns
	t _{AVLH}	t _{AVADVH}	Address Valid to Latch Enable High	Min	10	10	10	ns
gs	tELLH	teladvh	Chip Enable Low to Latch Enable High	Min	10	10	10	ns
imi	t _{LHAX}	tadvhax	Latch Enable High to Address Transition	Min	10	10	10	ns
Latch Timings	tLLLH	tadvladvh	Latch Enable Pulse Width	Min	10	10	10	ns
Lat	t _{LLQV}	t _{ADVLQV}	Latch Enable Low to Output Valid (Random)	Max	70 ⁽³⁾	85	100	ns
	tLHGL	tadvhgl	Latch Enable High to Output Enable Low	Min	0	0	0	ns

Note: 1. Sampled only, not 100% tested.
2. \overline{G} may be delayed by up to t_{ELQV} - t_{GLQV} after the falling edge of \overline{E} without increasing t_{ELQV} .
3. To be characterized.

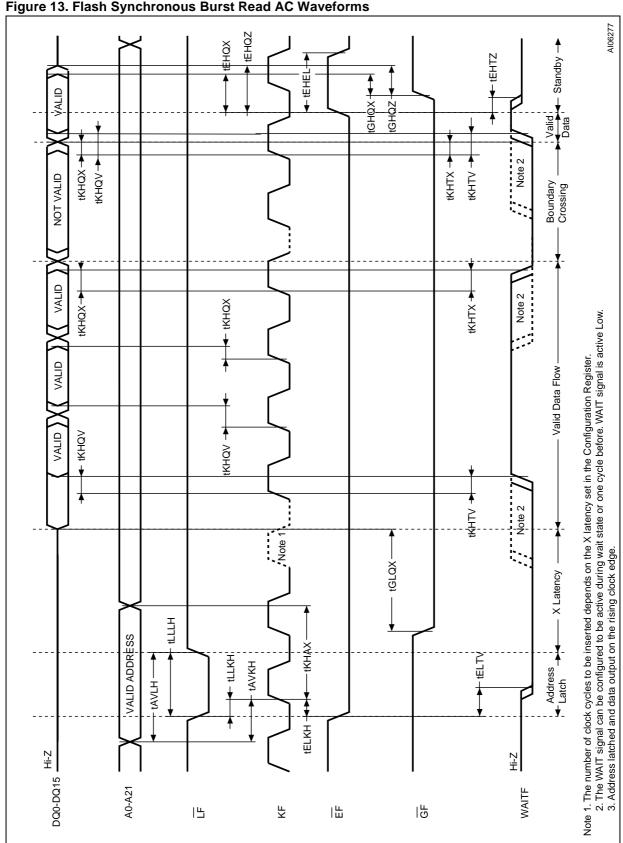


Figure 13. Flash Synchronous Burst Read AC Waveforms

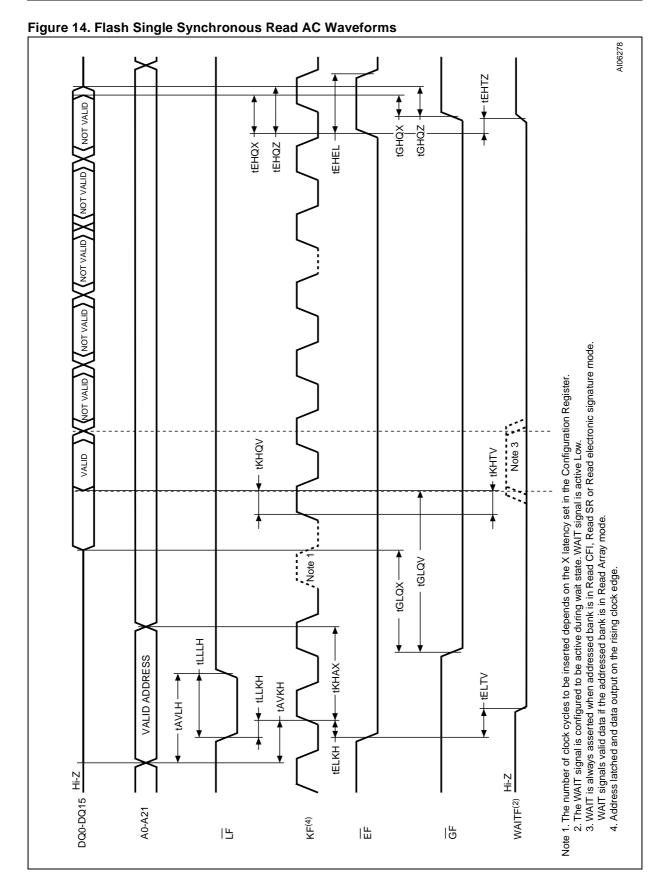


Figure 15. Flash Clock input AC Waveform

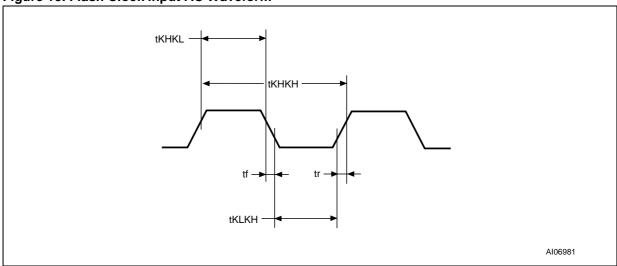
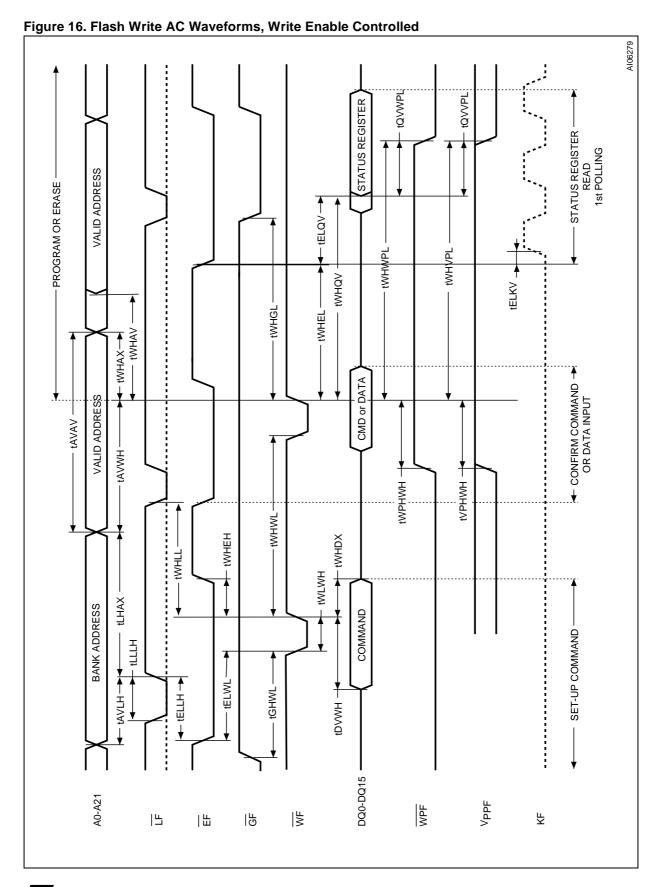



Table 22. Flash Synchronous Read AC Characteristics

	D	A.1/	B		M36	WT864TF	F/BF	11
	Symbol	Alt	Parameter		70	85	100	Unit
	t _{AVKH}	tavclkh	Address Valid to Clock High	Min	9	9	9	ns
	t _{ELKH}	t _{ELCLKH}	Chip Enable Low to Clock High	Min	9	9	9	ns
SE	t _{ELTV}		Chip Enable Low to Wait Valid	Max	14 ⁽³⁾	18	18	ns
Synchronous Read Timings	tehel		Chip Enable Pulse Width (subsequent synchronous reads)	Min	14 ⁽³⁾	14	14	ns
s Rea	tEHTZ		Chip Enable High to Wait Hi-Z	Max	20 ⁽³⁾	20	20	ns
nouo	t _{KHAX}	tCLKHAX	Clock High to Address Transition	Min	10	10	10	ns
Synchr	t _{KHQV} t _{KHTV}	^t CLKHQV	Clock High to Output Valid Clock High to WAIT Valid	Max	14 ⁽³⁾	18	18	ns
	t _{KHQX} t _{KHTX}	tCLKHQX	Clock High to Output Transition Clock High to WAIT Transition	Min	4	4	4	ns
	tLLKH	tadvlclkh	Latch Enable Low to Clock High	Min	9	9	9	ns
St	tianai	tour	Clock Period (f=40MHz)	Min		25	25	ns
catior	tkhkh	tCLK	Clock Period (f=54MHz)	Min	18.5			ns
Clock Specifications	tkhkl tklkh		Clock High to Clock Low Clock Low to Clock High	Min	4.5	5	5	ns
Clocl	t _f t _r		Clock Fall or Rise Time	Max	3	3	3	ns

3. To be characterized.

Note: 1. Sampled only, not 100% tested.
2. For other timings please refer to Table 21, Asynchronous Read AC Characteristics.

//

Table 23. Flash Write AC Characteristics, Write Enable Controlled

-	vmbe!	V 17	Parameter		M36	WT864T	F/BF	Unit
5	ymbol	Alt	Parameter		70	85	100	Unit
	t _{AVAV}	t _{WC}	Address Valid to Next Address Valid	Min	70 ⁽³⁾	85	100	ns
·	t _{AVLH}		Address Valid to Latch Enable High	Min	10	10	10	ns
·	t _{AVWH} ⁽⁴⁾	t _{WC}	Address Valid to Write Enable High	Min	45 ⁽³⁾	50	50	ns
٠	t _{DVWH}	t _{DS}	Data Valid to Write Enable High	Min	45 ⁽³⁾	50	50	ns
٠	t _{ELLH}		Chip Enable Low to Latch Enable High	Min	10	10	10	ns
٠	t _{ELWL}	tcs	Chip Enable Low to Write Enable Low	Min	0	0	0	ns
·	t _{ELQV}		Chip Enable Low to Output Valid	Min	70 ⁽³⁾	85	100	ns
ings	t _{ELKV}		Chip Enable High to Clock Valid	Min	9	9	9	ns
I Tim	t _{GHWL}		Output Enable High to Write Enable Low	Min	20	20	20	ns
ollec	t _{LHAX}		Latch Enable High to Address Transition	Min	10	10	10	ns
Sonti	t _{LLLH}		Latch Enable Pulse Width	Min	10	10	10	ns
able (t _{WHAV} ⁽⁴⁾		Write Enable High to Address Valid	Min	0	0	0	ns
Write Enable Controlled Timings	t _{WHAX} (4)	t _{AH}	Write Enable High to Address Transition	Min	0	0	0	ns
Writ	twHDX	t _{DH}	Write Enable High to Input Transition	Min	0	0	0	ns
,	twheh	tcH	Write Enable High to Chip Enable High	Min	0	0	0	ns
·	t _{WHEL} (2)		Write Enable High to Chip Enable Low	Min	25 ⁽³⁾	25	25	ns
٠	twHGL		Write Enable High to Output Enable Low	Min	0	0	0	ns
,	t _{WHLL}		Write Enable High to Latch Enable Low	Min	0	0	0	ns
•	t _{WHWL}	t _{WPH}	Write Enable High to Write Enable Low	Min	25	25	25	ns
	twHQV		Write Enable High to Output Valid	Min	95 ⁽³⁾	110	125	ns
	twLWH	twp	Write Enable Low to Write Enable High	Min	45 ⁽³⁾	50	50	ns
	t _{QVVPL}		Output (Status Register) Valid to V _{PPF} Low	Min	0	0	0	ns
Protection Timings	t _{QVWPL}		Output (Status Register) Valid to Write Protect Low	Min	0	0	0	ns
on Ti	t∨PHWH	t _{VPS}	V _{PPF} High to Write Enable High	Min	200	200	200	ns
tectic	twhvpl		Write Enable High to V _{PPF} Low	Min	200	200	200	ns
Pro	twhwpl		Write Enable High to Write Protect Low	Min	200	200	200	ns
	twphwh		Write Protect High to Write Enable High	Min	200	200	200	ns

Note: 1. Sampled only, not 100% tested.

twhel has the values shown when reading in the targeted bank. System designers should take this into account and may insert a software No-Op instruction to delay the first read in the same bank after issuing a command. If it is a Read Array operation in a different bank twhel is Ons.

^{3.} To be characterized.

^{4.} Meaningful only if LF is always kept low.

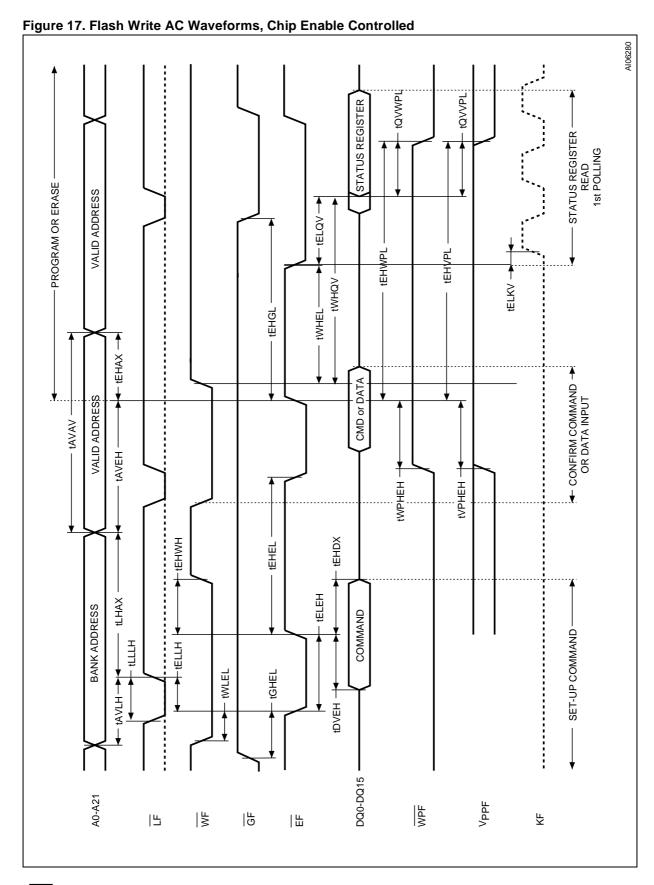


Table 24. Flash Write AC Characteristics, Chip Enable Controlled

	b.a.l	A 14	Davamatas		M36	WT864TI	F/BF	IImia
3	ymbol	Alt	Parameter		70	85	100	Unit
	t _{AVAV}	t _{WC}	Address Valid to Next Address Valid	Min	70 ⁽³⁾	85	100	ns
	t _{AVEH}	t _{WC}	Address Valid to Chip Enable High	Min	45 ⁽³⁾	50	50	ns
,	t _{AVLH}		Address Valid to Latch Enable High	Min	10	10	10	ns
	t _{DVEH}	t _{DS}	Data Valid to Write Enable High	Min	45 ⁽³⁾	50	50	ns
	t _{EHAX}	t _{AH}	Chip Enable High to Address Transition	Min	0	0	0	ns
	tEHDX	t _{DH}	Chip Enable High to Input Transition	Min	0	0	0	ns
ings	t _{EHEL}	t _{WPH}	Chip Enable High to Chip Enable Low	Min	25	25	25	ns
Tim	t _{EHGL}		Chip Enable High to Output Enable Low	Min	0	0	0	ns
pello.	tehwh	tcH	Chip Enable High to Write Enable High	Min	0	0	0	ns
Sontr	t _{ELKV}		Chip Enable Low to Clock Valid	Min	9	9	9	ns
ble (tELEH	twp	Chip Enable Low to Chip Enable High	Min	45 ⁽³⁾	50	50	ns
Chip Enable Controlled Timings	t _{ELLH}		Chip Enable Low to Latch Enable High	Min	10	10	10	ns
Chip	t _{ELQV}		Chip Enable Low to Output Valid	Min	70 ⁽³⁾	85	100	ns
Í	t _{GHEL}		Output Enable High to Chip Enable Low	Min	20	20	20	ns
	t _{LHAX}		Latch Enable High to Address Transition	Min	10	10	10	ns
Í	tLLLH		Latch Enable Pulse Width	Min	10	10	10	ns
Í	t _{WHEL} ⁽²⁾		Write Enable High to Chip Enable Low	Min	25 ⁽³⁾	25	25	ns
,	t _{WHQV}		Write Enable High to Output Valid	Min	95	110	125	ns
Í	t _{WLEL}	tcs	Write Enable Low to Chip Enable Low	Min	0	0	0	ns
	t _{EHVPL}		Chip Enable High to V _{PPF} Low	Min	200	200	200	ns
ngs	t _{EHWPL}		Chip Enable High to Write Protect Low	Min	200	200	200	ns
Timi	t _{QVVPL}		Output (Status Register) Valid to V _{PPF} Low	Min	0	0	0	ns
Protection Timings	t _{QVWPL}		Output (Status Register) Valid to Write Protect Low	Min	0	0	0	ns
Pro	t _{VPHEH}	t _{VPS}	V _{PPF} High to Chip Enable High	Min	200	200	200	ns
	t _{WPHEH}		Write Protect High to Chip Enable High	Min	200	200	200	ns

Note: 1. Sampled only, not 100% tested.

2. t_{WHEL} has the values shown when reading in the targeted bank. System designers should take this into account and may insert a software No-Op instruction to delay the first read in the same bank after issuing a command. If it is a Read Array operation in a different bank t_{WHEL} is 0ns.

3. To be characterized.

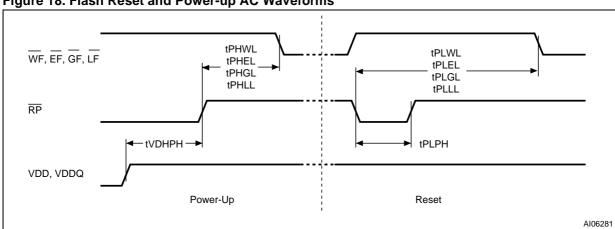
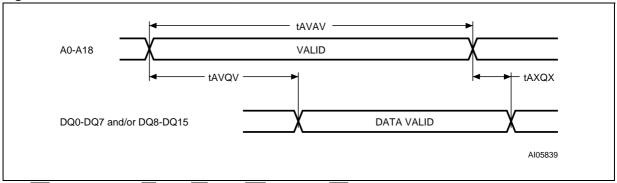


Figure 18. Flash Reset and Power-up AC Waveforms


Table 25. Flash Reset and Power-up AC Characteristics

Symbol	Parameter	Test Condition		70	85	100	Unit
t _{PLWL}	Reset Low to	During Program	Min	10	10	10	μs
tpLEL	Write Enable Low, Chip Enable Low,	During Erase	Min	20	20	20	μs
t _{PLLL}	tpLGL Output Enable Low, Latch Enable Low	Other Conditions	Min	80	80	80	ns
tphwl tphel tphgl tphll	Reset High to Write Enable Low Chip Enable Low Output Enable Low Latch Enable Low		Min	30	30	30	ns
t _{PLPH} (1,2)	RP Pulse Width		Min	50	50	50	ns
t _{VDHPH} (3)	Supply Voltages High to Reset High		Min	50	50	50	μs

Note: 1. The device Reset is possible but not guaranteed if $t_{PLPH} < 50$ ns.

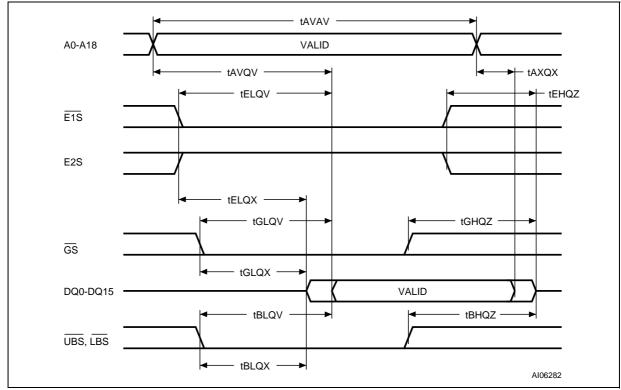

Sampled only, not 100% tested.
 It is important to assert RP in order to allow proper CPU initialization during Power-Up or Reset.

Figure 19. SRAM Address Controlled, Read AC Waveforms

Note: $\overline{E1S}$ = Low, $\overline{E2S}$ = High, \overline{GS} = Low, \overline{WS} = High, \overline{UBS} = Low and/or \overline{LBS} = Low.

Figure 20. SRAM Chip Enable or Output Enable Controlled, Read AC Waveforms

Note: Write Enable (\overline{WF}) = High

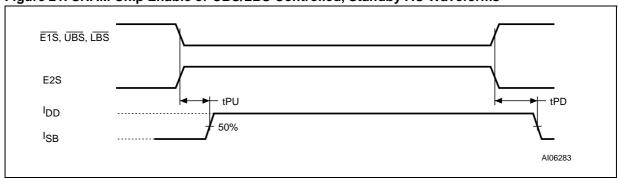


Figure 21. SRAM Chip Enable or UBS/LBS Controlled, Standby AC Waveforms

Table 26. SRAM Read and Standby AC Characteristics

Cumbal	Davamatas	M36WT864TF/BF	Unit	
Symbol	Parameter	70		
t _{AVAV}	Read Cycle Time	Min	70	ns
t _{AVQV}	Address Valid to Output Valid	Max	70	ns
t _{AXQX} (1)	Data hold from address change	Min	5	ns
t _{BHQZ} (2,3,4)	Upper/Lower Byte Enable High to Output Hi-Z	Max	25	ns
t _{BLQV}	Upper/Lower Byte Enable Low to Output Valid	Max	70	ns
t _{BLQX} (1)	Upper/Lower Byte Enable Low to Output Transition	Min	5	ns
t _{EHQZ} (2,3,4)	Chip Enable High to Output Hi-Z	Max	25	ns
t _{ELQV}	Chip Enable Low to Output Valid	Max	70	ns
t _{ELQX} (1)	Chip Enable Low to Output Transition	Min	5	ns
t _{GHQZ} (2,3,4)	Output Enable High to Output Hi-Z	Max	25	ns
tGLQV	Output Enable Low to Output Valid	Max	35	ns
t _{GLQX} (1)	Output Enable Low to Output Transition		5	ns
t _{PD} ⁽⁴⁾	Chip Enable or UB/LB High to Power Down	Max	0	ns
t _{PU} (4)	Chip Enable or UB/LB Low to Power Up	Min	70	ns

Note: 1. Test conditions assume transition timing reference level = $0.3V_{DDS}$ or $0.7V_{DDS}$.

^{2.} At any given temperature and voltage condition, t_{GHQZ} is less than t_{GLQX}, t_{BHQZ} is less than t_{BLQX} and t_{EHQZ} is less than t_{ELQX} for any given device.

^{3.} These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.

^{4.} Tested initially and after any design or process changes that may affect these parameters.

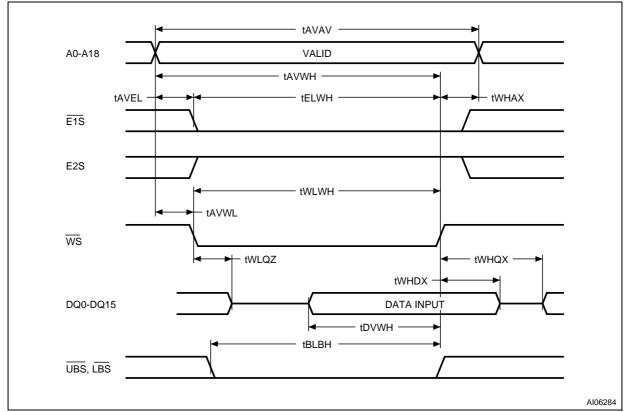


Figure 22. SRAM Write AC Waveforms, Write Enable Controlled

Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied.

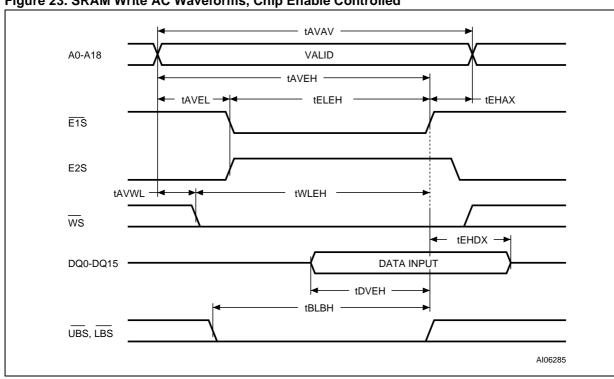
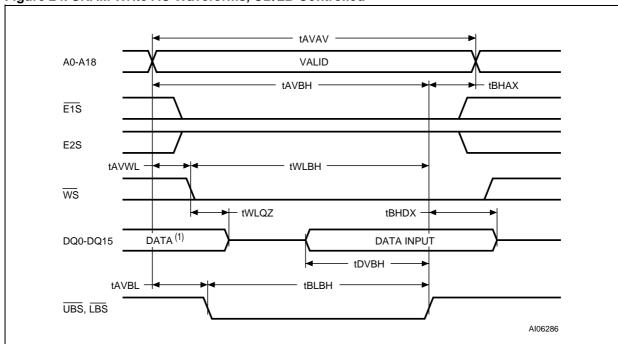



Figure 23. SRAM Write AC Waveforms, Chip Enable Controlled

Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied.

Table 27. SRAM Write AC Characteristics

Cumbal	Devenuetes	M36WT864TF/BF	llm!t		
Symbol	Parameter		70	Unit	
t _{AVAV}	Write Cycle Time	Min	70	ns	
t _{AVBH}	Address Valid to LBS, UBS High	Min	60	ns	
t _{AVBL}	Address Valid to LBS, UBS Low	Min	0	ns	
t _{AVEH}	Address Valid to Chip Enable High	Min	60	ns	
taveL	Address valid to Chip Enable Low	Min	0	ns	
t _{AVWH}	Address Valid to Write Enable High	Min	60	ns	
t _{AVWL}	Address Valid to Write Enable Low	Min	0	ns	
t _{BHAX}	LBS, UBS High to Address Transition	Min	0	ns	
t _{BHDX}	LBS, UBS High to Input Transition	Min	0	ns	
t _{BLBH}	LBS, UBS Low to LBS, UBS High	Min	60	ns	
t _{BLEH}	LBS, UBS Low to Chip Enable High	Min	60	ns	
t _{BLWH}	LBS, UBS Low to Write Enable High	Min	60	ns	
t _{DVBH}	t _{DVBH} Input Valid to LBS, UBS High		30	ns	
toveh	Input Valid to Chip Enable High	Min	30	ns	
t _{DVWH}	Input Valid to Write Enable High	Min	30	ns	
t _{EHAX}	Chip Enable High to Address Transition	Min	0	ns	
t _{EHDX}	Chip enable High to Input Transition	Min	0	ns	
t _{ELBH}	Chip Enable Low to LBS, UBS High	Min	60	ns	
tELEH	Chip Enable Low to Chip Enable High	Min	60	ns	
telwh	Chip Enable Low to Write Enable High	Min	60	ns	
t _{WHAX}	Write Enable High to Address Transition	Min	0	ns	
twHDX	Write Enable High to Input Transition	Min	0	ns	
t _{WHQX} (1)	Write Enable High to Output Transition	Min	5	ns	
t _{WLBH}	Write Enable Low to LBS, UBS High		60	ns	
t _{WLEH}	Write Enable Low to Chip Enable High	Min	60	ns	
WLQZ (1,2,3)	Write Enable Low to Output Hi-Z	Max	20	ns	
t _{WLWH}	Write Enable Low to Write Enable High	Min	50	ns	

Note: 1. At any given temperature and voltage condition, t_{WLQZ} is less than t_{WHQX} for any given device.

2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.

3. Tested initially and after any design or process changes that may affect these parameters.

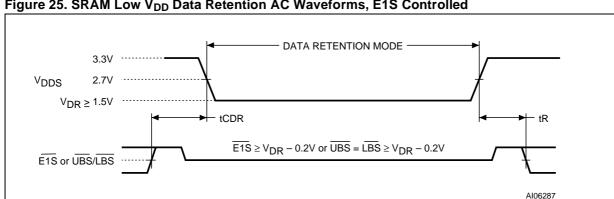


Figure 25. SRAM Low V_{DD} Data Retention AC Waveforms, $\overline{\text{E1S}}$ Controlled

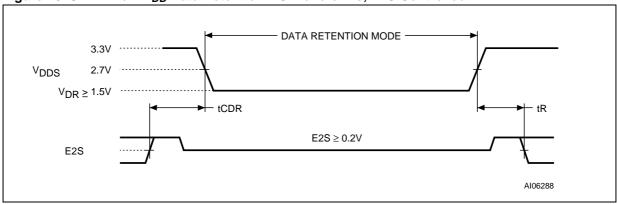
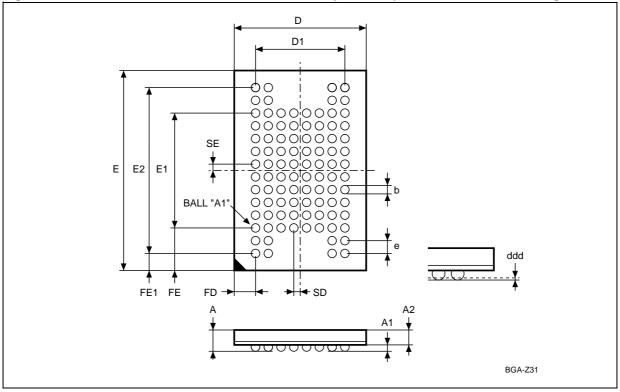


Table 28. SRAM Low V_{DD} Data Retention Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
I _{DDDR} (1)	Supply Current (Data Retention)	$V_{DD} = 1.5V, \overline{E1S} \ge V_{DDS} - 0.2V \text{ or}$ $\underline{E2S} \le 0.2V \text{ or}$ $\overline{UBS} = \overline{LBS} \ge V_{DDS} - 0.2V, f = 0$		5	10	μA
t _{CDR} (1,2)	Chip Deselected to Data Retention Time		0			ns
t _R ⁽²⁾	Operation Recovery Time		t _{AVAV}			ns
V _{DR} ⁽¹⁾	Supply Voltage (Data Retention)	$\overline{E1S} \ge V_{DDS} -0.2V \text{ or } E2S \le 0.2V \text{ or}$ $\overline{UBS} = \overline{LBS} \ge V_{DDS} -0.2V, f = 0$	1.5			V

Note: 1. All other Inputs at $V_{IH} \geq V_{DDS} - 0.2 V$ or $V_{IL} \leq 0.2 V.$


3. No input may exceed V_{DDS} +0.2V.

4

^{2.} Tested initially and after any design or process that may affect these parameters. t_{AVAV} is Read cycle time.

PACKAGE MECHANICAL

Figure 27. Stacked LFBGA96 - 8x14mm, 8x10ball array, 0.8mm pitch, Bottom View Package Outline

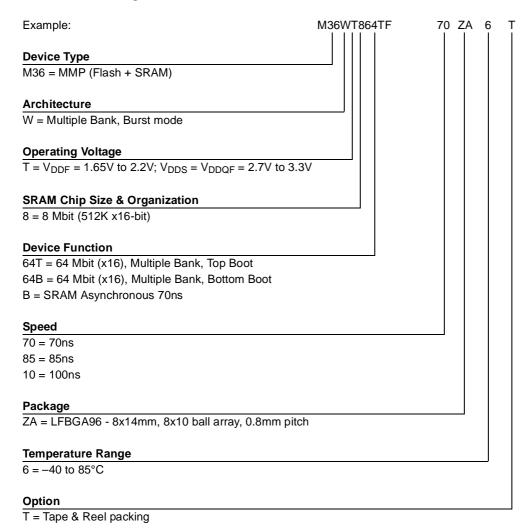

Note: Drawing is not to scale.

Table 29. Stacked LFBGA96 - 8x14mm, 8x10 ball array, 0.8mm pitch, Package Mechanical Data

Sumb al		millimeters			inches	
Symbol	Тур	Min	Max	Тур	Min	Max
Α			1.400			0.0551
A1		0.300			0.0118	
A2	0.960			0.0378		
b	0.400	0.350	0.450	0.0157	0.0138	0.0177
D	8.000	7.900	8.100	0.3150	0.3110	0.3189
D1	5.600	_	-	0.2205	_	_
ddd			0.100			0.0039
Е	14.000	13.900	14.100	0.5512	0.5472	0.5551
E1	7.200	_	-	0.2835	_	_
E2	10.400	_	-	0.4094	_	_
е	0.800	_	-	0.0315	_	_
FD	1.200	_	-	0.0472	_	_
FE	3.400	_	_	0.1339	_	_
FE1	1.800	_	-	0.0709	_	_
SD	0.400	_	-	0.0157	_	_
SE	0.400	_	_	0.0157	_	_

PART NUMBERING

Table 30. Ordering Information Scheme

Devices are shipped from the factory with the memory content bits erased to '1'. For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

REVISION HISTORY

Table 31. Document Revision History

Date	Version	Revision Details
10-Jul-2002	1.0	First Issue

APPENDIX A. FLASH BLOCK ADDRESS TABLES

Table 32. Flash Top Boot Block Addresses

Table 32. Flash Top Boot Block Addresses				
Bank	#	Size (KWord)	Address Range	
	0	4	3FF000-3FFFFF	
	1	4	3FE000-3FEFFF	
	2	4	3FD000-3FDFFF	
	3	4	3FC000-3FCFFF	
	4	4	3FB000-3FBFFF	
YU.	5	4	3FA000-3FAFFF	
Parameter Bank	6	4	3F9000-3F9FFF	
ete	7	4	3F8000-3F8FFF	
ram	8	32	3F0000-3F7FFF	
Ра	9	32	3E8000-3EFFFF	
	10	32	3E0000-3E7FFF	
	11	32	3D8000-3DFFFF	
	12	32	3D0000-3D7FFF	
	13	32	3C8000-3CFFFF	
	14	32	3C0000-3C7FFF	
	15	32	3B8000-3BFFFF	
	16	32	3B0000-3B7FFF	
=	17	32	3A8000-3AFFFF	
k 0	18	32	3A0000-3A7FFF	
Bank 0	19	32	398000-39FFFF	
	20	32	390000-397FFF	
	21	32	388000-38FFFF	
	22	32	380000-387FFF	
	23	32	378000-37FFFF	
	24	32	370000-377FFF	
	25	32	368000-36FFFF	
4 1	26	32	360000-367FFF	
Bank 1	27	32	358000-35FFFF	
	28	32	350000-357FFF	
	29	32	348000-34FFFF	
	30	32	340000-347FFF	
	31	32	338000-33FFFF	
	32	32	330000-337FFF	
	33	32	328000-32FFFF	
Bank 2	34	32	320000-327FFF	
	35	32	318000-31FFFF	
Ш	36	32	310000-317FFF	
	37	32	308000-30FFFF	
	38	32	300000-307FFF	
		\ <u>\</u>	000000 007111	

			1
	39	32	2F8000-2FFFFF
	40	32	2F0000-2F7FFF
	41	32	2E8000-2EFFFF
Bank 3	42	32	2E0000-2E7FFF
	43	32	2D8000-2DFFFF
	44	32	2D0000-2D7FFF
	45	32	2C8000-2CFFFF
	46	32	2C0000-2C7FFF
	47	32	2B8000-2BFFFF
	48	32	2B0000-2B7FFF
	49	32	2A8000-2AFFFF
ㅊ 4	50	32	2A0000-2A7FFF
Bank 4	51	32	298000-29FFFF
	52	32	290000-297FFF
	53	32	288000-28FFFF
	54	32	280000-287FFF
	55	32	278000-27FFFF
	56	32	270000-277FFF
	57	32	268000-26FFFF
x 5	58	32	260000-267FFF
Bank 5	59	32	258000-25FFFF
_	60	32	250000-257FFF
	61	32	248000-24FFFF
	62	32	240000-247FFF
	63	32	238000-23FFFF
	64	32	230000-237FFF
	65	32	228000-22FFFF
х 6	66	32	220000-227FFF
Bank 6	67	32	218000-21FFFF
_	68	32	210000-217FFF
	69	32	208000-20FFFF
	70	32	200000-207FFF
	71	32	1F8000-1FFFFF
	72	32	1F0000-1F7FFF
	73	32	1E8000-1EFFFF
Bank 7	74	32	1E0000-1E7FFF
3an	75	32	1D8000-1DFFFF
ш	76	32	1D0000-1D7FFF
	77	32	1C8000-1CFFFF
	78	32	1C0000-1C7FFF
	1		1

	79	32	1B8000-1BFFFF
		32	1B0000-1B1111
	80		
	81	32	1A8000-1AFFFF
Bank 8	82	32	1A0000-1A7FFF
Ba	83	32	198000-19FFFF
	84	32	190000-197FFF
	85	32	188000-18FFFF
	86	32	180000-187FFF
	87	32	178000-17FFFF
	88	32	170000-177FFF
_	89	32	168000-16FFFF
Bank 9	90	32	160000-167FFF
Bar	91	32	158000-15FFFF
	92	32	150000-157FFF
	93	32	148000-14FFFF
	94	32	140000-147FFF
	95	32	138000-13FFFF
	96	32	130000-137FFF
	97	32	128000-12FFFF
k 10	98	32	120000-127FFF
Bank 10	99	32	118000-11FFFF
ш	100	32	110000-117FFF
	101	32	108000-10FFFF
	102	32	100000-107FFF
	103	32	0F8000-0FFFFF
	104	32	0F0000-0F7FFF
	105	32	0E8000-0EFFFF
c 11	106	32	0E0000-0E7FFF
Bank 11	107	32	0D8000-0DFFFF
ш	108	32	0D0000-0D7FFF
	109	32	0C8000-0CFFFF
	110	32	0C0000-0C7FFF
l	1		

	111	32	0B8000-0BFFFF
	112	32	0B0000-0B7FFF
01	113	32	0A8000-0AFFFF
Bank 12	114	32	0A0000-0A7FFF
3anl	115	32	098000-09FFFF
Ш	116	32	090000-097FFF
	117	32	088000-08FFFF
	118	32	080000-087FFF
	119	32	078000-07FFFF
	120	32	070000-077FFF
	121	32	068000-06FFFF
k 13	122	32	060000-067FFF
Bank 13	123	32	058000-05FFFF
Ш	124	32	050000-057FFF
	125	32	048000-04FFFF
	126	32	040000-047FFF
	127	32	038000-03FFFF
	128	32	030000-037FFF
_	129	32	028000-02FFFF
4 1 4	130	32	020000-027FFF
Bank 14	131	32	018000-01FFFF
ш	132	32	010000-017FFF
	133	32	008000-00FFFF
	134	32	000000-007FFF

Note: There are two Bank Regions, Region 1 contains all the banks that are made up of main blocks only, Region 2 contains the banks that are made up of the parameter and main blocks.

Table 33. Flash Bottom Boot Block Addresses

Bank	#	Size (KWord)	Address Range
	134	32	3F8000-3FFFFF
	133	32	3F0000-3F7FFF
	132	32	3E8000-3EFFFF
Bank 14	131	32	3E0000-3E7FFF
San	130	32	3D8000-3DFFFF
	129	32	3D0000-3D7FFF
	128	32	3C8000-3CFFFF
	127	32	3C0000-3C7FFF
	126	32	3B8000-3BFFFF
	125	32	3B0000-3B7FFF
	124	32	3A8000-3AFFFF
c 13	123	32	3A0000-3A7FFF
Bank 13	122	32	398000-39FFFF
ш	121	32	390000-397FFF
	120	32	388000-38FFFF
	119	32	380000-387FFF
	118	32	378000-37FFFF
	117	32	370000-377FFF
	116	32	368000-36FFFF
(12	115	32	360000-367FFF
Bank 12	114	32	358000-35FFFF
ш	113	32	350000-357FFF
	112	32	348000-34FFFF
	111	32	340000-347FFF
	110	32	338000-33FFFF
	109	32	330000-337FFF
	108	32	328000-32FFFF
11	107	32	320000-327FFF
Bank 11	106	32	318000-31FFFF
ш	105	32	310000-317FFF
	104	32	308000-30FFFF
	103	32	300000-307FFF
	102	32	2F8000-2FFFFF
	101	32	2F0000-2F7FFF
_	100	32	2E8000-2EFFFF
Bank 10	99	32	2E0000-2E7FFF
3ank	98	32	2D8000-2DFFFF
Ш	97	32	2D0000-2D7FFF
	96	32	2C8000-2CFFFF
	95	32	2C0000-2C7FFF

	94	32	2B8000-2BFFFF
	93	32	2B0000-2B7FFF
	92	32	2A8000-2AFFFF
9	91	32	2A0000-2A7FFF
Bank 9	90	32	298000-29FFFF
	89	32	290000-297FFF
	88	32	288000-28FFFF
	87	32	280000-287FFF
	86	32	278000-27FFFF
	85	32	270000-277FFF
	84	32	268000-26FFFF
8	83	32	260000-267FFF
Bank 8	82	32	258000-25FFFF
	81	32	250000-257FFF
	80	32	248000-24FFFF
	79	32	240000-247FFF
	78	32	238000-23FFFF
	77	32	230000-237FFF
	76	32	228000-22FFFF
Bank 7	75	32	220000-227FFF
Bar	74	32	218000-21FFFF
	73	32	210000-217FFF
	72	32	208000-20FFFF
	71	32	200000-207FFF
	70	32	1F8000-1FFFFF
	69	32	1F0000-1F7FFF
	68	32	1E8000-1EFFFF
Bank 6	67	32	1E0000-1E7FFF
Bar	66	32	1D8000-1DFFFF
	65	32	1D0000-1D7FFF
	64	32	1C8000-1CFFFF
	63	32	1C0000-1C7FFF
	62	32	1B8000-1BFFFF
	61	32	1B0000-1B7FFF
	60	32	1A8000-1AFFFF
Bank 5	59	32	1A0000-1A7FFF
Bar	58	32	198000-19FFFF
	57	32	190000-197FFF
	56	32	188000-18FFFF
	55	32	180000-187FFF

	54	32	178000-17FFFF
	53	32	170000-177FFF
	52	32	168000-16FFFF
k 4	51	32	160000-167FFF
Bank 4	50	32	158000-15FFFF
	49	32	150000-157FFF
	48	32	148000-14FFFF
	47	32	140000-147FFF
	46	32	138000-13FFFF
	45	32	130000-137FFF
	44	32	128000-12FFFF
Bank 3	43	32	120000-127FFF
Ban	42	32	118000-11FFFF
	41	32	110000-117FFF
	40	32	108000-10FFFF
	39	32	100000-107FFF
	38	32	0F8000-0FFFFF
	37	32	0F0000-0F7FFF
	36	32	0E8000-0EFFFF
Bank 2	35	32	0E0000-0E7FFF
Ban	34	32	0D8000-0DFFFF
	33	32	0D0000-0D7FFF
	32	32	0C8000-0CFFFF
	31	32	0C0000-0C7FFF
	30	32	0B8000-0BFFFF
k 1	29	32	0B0000-0B7FFF
	28	32	0A8000-0AFFFF
	27	32	0A0000-0A7FFF
Bank 1	26	32	098000-09FFFF
	25	32	090000-097FFF
	24	32	088000-08FFFF
	23	32	080000-087FFF

	22	32	078000-07FFFF
	21	32	070000-077FFF
	20	32	068000-06FFFF
Bank 0	19	32	060000-067FFF
Ban	18	32	058000-05FFFF
	17	32	050000-057FFF
	16	32	048000-04FFFF
	15	32	040000-047FFF
	14	32	038000-03FFFF
	13	32	030000-037FFF
	12	32	028000-02FFFF
	11	32	020000-027FFF
	10	32	018000-01FFFF
Ϋ́	9	32	010000-017FFF
Parameter Bank	8	32	008000-00FFFF
etei	7	4	007000-007FFF
ram	6	4	006000-006FFF
Ра	5	4	005000-005FFF
	4	4	004000-004FFF
	3	4	003000-003FFF
	2	4	002000-002FFF
	1	4	001000-001FFF
	0	4	000000-000FFF

Note: There are two Bank Regions, Region 1 contains all the banks that are made up of main blocks only, Region 2 contains the banks that are made up of the parameter and main blocks.

APPENDIX B. FLASH COMMON FLASH INTERFACE

The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary.

When the Read CFI Query Command is issued the device enters CFI Query mode and the data structure is read from the memory. Tables 34, 35, 36, 37, 38, 40 and 1 show the addresses used to retrieve the data. The Query data is always presented on the lowest order data outputs (DQ0-DQ7), the other outputs (DQ8-DQ15) are set to 0. The CFI data structure also contains a security area where a 64 bit unique security number is written (see Table 1, Security Code area). This area can be accessed only in Read mode by the final user. It is impossible to change the security number after it has been written by ST. Issue a Read Array command to return to Read mode.

Table 34. Query Structure Overview

Offset	Sub-section Name	Description
00h	Reserved	Reserved for algorithm-specific information
10h	CFI Query Identification String	Command set ID and algorithm data offset
1Bh	System Interface Information	Device timing & voltage information
27h	Device Geometry Definition	Flash device layout
Р	Primary Algorithm-specific Extended Query table	Additional information specific to the Primary Algorithm (optional)
А	Alternate Algorithm-specific Extended Query table	Additional information specific to the Alternate Algorithm (optional)
80h	Security Code Area	Lock Protection Register Unique device Number and User Programmable OTP

Note: The Flash memory display the CFI data structure when CFI Query command is issued. In this table are listed the main sub-sections detailed in Tables 35, 36, 37, 38, 40 and 1. Query data is always presented on the lowest order data outputs.

Table 35. CFI Query Identification String

Offset	Sub-section Name	Description	Value	
00h	0020h	Manufacturer Code		
01h	8810h 8811h	Device Code		
02h	reserved	Reserved		
03h	reserved	Reserved		
04h-0Fh	reserved	Reserved		
10h	0051h		"Q"	
11h	0052h	Query Unique ASCII String "QRY"		
12h	0059h			
13h	0003h	Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm		
14h	0000h			
15h	offset = P = 0039h	Address for Driver Alexander of Occasionable (con Table 27)		
16h	0000h	Address for Primary Algorithm extended Query table (see Table 37)		
17h	0000h	Alternate Vendor Command Set and Control Interface ID Code second vendor - specified algorithm supported		
18h	0000h			
19h	value = A = 0000h	Address for Alternate Almerithms outen ded Overstehl-		
1Ah	0000h	Address for Alternate Algorithm extended Query table		

477

Table 36. CFI Query System Interface Information

Offset	Data	Description Valu			
1Bh	0017h	V _{DD} Logic Supply Minimum Program/Erase or Write voltage bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 millivolts	1.7V		
1Ch	0022h	V _{DD} Logic Supply Maximum Program/Erase or Write voltage bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 millivolts	2.2V		
1Dh	0017h	V _{PPF} [Programming] Supply Minimum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 millivolts	1.7V		
1Eh	00C0h	V _{PPF} [Programming] Supply Maximum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 millivolts	12V		
1Fh	0004h	Typical time-out per single byte/word program = 2 ⁿ μs	16µs		
20h	0003h	Typical time-out for quadruple word program = 2 ⁿ μs	8µs		
21h	000Ah	Typical time-out per individual block erase = 2 ⁿ ms			
22h	0000h	Typical time-out for full chip erase = 2 ⁿ ms	NA		
23h	0003h	Maximum time-out for word program = 2 ⁿ times typical	128µs		
24h	0004h	Maximum time-out for quadruple word = 2 ⁿ times typical	128µs		
25h	0002h	Maximum time-out per individual block erase = 2 ⁿ times typical 4s			
26h	0000h	Maximum time-out for chip erase = 2 ⁿ times typical	NA		

Table 37. Device Geometry Definition

	set Word Mode	Data	Description	
	27h	0017h	Device Size = 2 ⁿ in number of bytes	8 MByte
	28h 29h	0001h 0000h	Flash Device Interface Code description	
	2Ah 2Bh	0003h 0000h	Maximum number of bytes in multi-byte program or page = 2 ⁿ	8 Byte
	2Ch	0002h	Number of identical sized erase block regions within the device bit 7 to $0 = x = \text{number of Erase Block Regions}$	2
	2Dh 2Eh	007Eh 0000h	Region 1 Information Number of identical-size erase blocks = 007Eh+1	
4TF	2Fh 30h	0000h 0001h	Region 1 Information Block size in Region 1 = 0100h * 256 byte 64	
M36WT864TF	31h 32h	0007h 0000h	Region 2 Information Number of identical-size erase blocks = 0007h+1	
M36	33h 34h	0020h 0000h	Region 2 Information Block size in Region 2 = 0020h * 256 byte	
	35h 38h	0000h	Reserved for future erase block region information	

64 Mbit (4Mb x16, Multiple Bank, Burst) Flash Memory and 8 Mbit (512K x16) SRAM, Multiple Memory Product

July 2002 1/92

Offset	Data	Description		
(P+C)h = 45h	0018h	V _{DD} Logic Supply Optimum Program/Erase voltage (highest performance) bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV		
(P+D)h = 46h	+D)h = 46h 00C0h V _{PPF} Supply Optimum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV		12V	

Table 39. Protection Register Information

Offset	Data	Description	Value
(P+E)h = 47h	0001h	Number of protection register fields in JEDEC ID space. 0000h indicates that 256 fields are available.	1
(P+F)h = 48h	0080h	Protection Field 1: Protection Description	0080h
(P+10)h = 49h	0000h	Bits 0-7 Lower byte of protection register address Bits 8-15 Upper byte of protection register address	000011
(P+11)h = 4Ah	0003h	Bits 16-23 2 ⁿ bytes in factory pre-programmed region	8 Bytes
(P+12)h= 4Bh	0004h	Bits 24-31 2 ⁿ bytes in user programmable region	

Table 40. Burst Read Information

Offset	Data	Description		
(P+13)h = 4Ch	0003h	Page-mode read capability bits 0-7 'n' such that 2 ⁿ HEX value represents the number of read- page bytes. See offset 28h for device word width to determine page-mode data output width.	8 Bytes	
(P+14)h = 4Dh	0003h	Number of synchronous mode read configuration fields that follow.	3	
(P+15)h = 4Eh	0001h	Synchronous mode read capability configuration 1 bit 3-7 Reserved bit 0-2 'n' such that 2 ⁿ⁺¹ HEX value represents the maximum number of continuous synchronous reads when the device is configured for its maximum word width. A value of 07h indicates that the device is capable of continuous linear bursts that will output data until the internal burst counter reaches the end of the device's burstable address space. This field's 3-bit value can be written directly to the read configuration register bit 0-2 if the device is configured for its maximum word width. See offset 28h for word width to determine the burst data output width.	4	
(P+16)h = 4Fh	0002h	Synchronous mode read capability configuration 2		
(P+17)h = 50h	0007h	Synchronous mode read capability configuration 3		

Table 41. Bank and Erase Block Region Information

M36WT864TF (top) M36WT864BF (I		(bottom)	Description	
Offset	Data	Offset	Data	Description
(P+18)h =51h	02h	(P+18)h =51h	02h	Number of Bank Regions within the device

Note: 1. The variable P is a pointer which is defined at CFI offset 15h.

He validate is a pointer which is defined at or bridge ton.
 Bank Regions. There are two Bank Regions, 1 contains all the banks that are made up of main blocks only, 2 contains the banks that are made up of the parameter and main blocks.

Table 42. Bank and Erase Block Region 1 Information

M36WT864TF (top)		M36WT864BF	(bottom)	Description					
Offset	Data	Offset	Data	Description					
(P+19)h =52h	0Fh	(P+19)h =52h	01h	Number of identical banks within Bank Region 1					
(P+1A)h =53h	00h	(P+1A)h =53h	00h						
(P+1B)h =54h	11h	(P+1B)h =54h	11h	Number of program or erase operations allowed in region 1 Bits 0-3: Number of simultaneous program operations Bits 4-7: Number of simultaneous erase operations					
(P+1C)h =55h	00h	(P+1C)h =55h	00h	Number of program or erase operations allowed in other bank while a bank in same region is programming Bits 0-3: Number of simultaneous program operations Bits 4-7: Number of simultaneous erase operations					
(P+1D)h =56h	00h	(P+1D)h =56h	00h	Number of program or erase operations allowed in other banks while a bank in this region is erasing Bits 0-3: Number of simultaneous program operations Bits 4-7: Number of simultaneous erase operations					
(P+1E)h =57h	01h	(P+1E)h =57h	02h	Types of erase block regions in region 1 n = number of erase block regions with contiguous same-size erase blocks. Symmetrically blocked banks have one blocking region. (2)					
(P+1F)h =58h	07h	(P+1F)h =58h	07h						
(P+20)h =59h	00h	(P+20)h =59h	00h	Bank Region 1 Erase Block Type 1 Information					
(P+21)h =5Ah	00h	(P+21)h =5Ah	20h	Bits 0-15: n+1 = number of identical-sized erase blocks Bits 16-31: n×256 = number of bytes in erase block region					
(P+22)h =5Bh	01h	(P+22)h =5Bh	00h						
(P+23)h =5Ch	64h	(P+23)h =5Ch	64h	Bank Region 1 (Erase Block Type 1)					
(P+24)h =5Dh	00h	(P+24)h =5Dh	00h	Minimum block erase cycles x 1000					
(P+25)h =5Eh	01h	(P+25)h =5Eh	01h	Bank Region 1 (Erase Block Type 1): Blts per cell, internal ECC Bits 0-3: bits per cell in erase region Bit 4: reserved for "internal ECC used" Blts 5-7: reserved 5Eh 01 5Eh 01					
(P+26)h =5Fh	03h	(P+26)h =5Fh	03h	Bank Region 1 (Erase Block Type 1): Page mode and synchronous mode capabilities Bit 0: Page-mode reads permitted Bit 1: Synchronous reads permitted Bit 2: Synchronous writes permitted Bits 3-7: reserved					
		(P+27)h =60h	06h						
		(P+28)h =61h	00h	Bank Region 1 Erase Block Type 2 Information					
		(P+29)h =62h	00h	Bits 0-15: n+1 = number of identical-sized erase blocks Bits 16-31: n×256 = number of bytes in erase block region					
		(P+2A)h =63h	01h						
		(P+2B)h =64h	64h	Bank Region 1 (Erase Block Type 2)					
		(P+2C)h =65h	00h	Minimum block erase cycles × 1000					

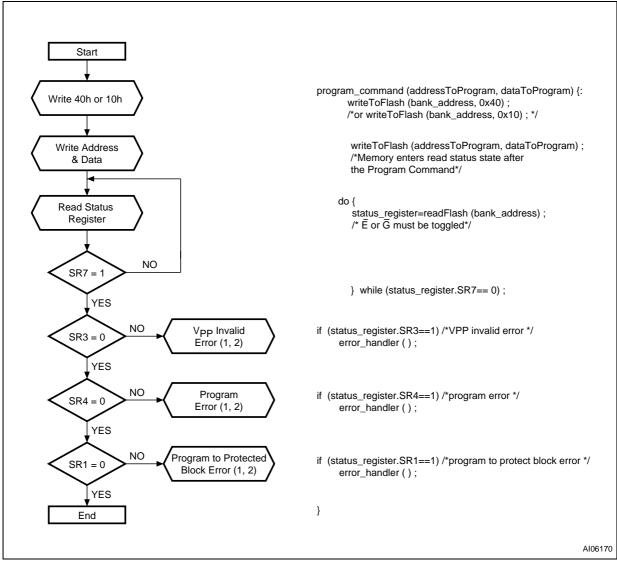
M36WT864T	M36WT864TF (top)		(bottom)	Description		
Offset	Data	Offset	Data	Description		
	(P+2D)h =66h 01h			Bank Regions 1 (Erase Block Type 2): Blts per cell, internal ECC Bits 0-3: bits per cell in erase region Bit 4: reserved for "internal ECC used" Blts 5-7: reserved		
		(P+2E)h =67h	03h	Bank Region 1 (Erase Block Type 2): Page mode and synchronous mode capabilities Bit 0: Page-mode reads permitted Bit 1: Synchronous reads permitted Bit 2: Synchronous writes permitted Bits 3-7: reserved		

Note: 1. The variable P is a pointer which is defined at CFI offset 15h.

Table 43. Bank and Erase Block Region 2 Information

M36WT864TF (top)		M36WT864BF	(bottom)	Description					
Offset	Data	Offset	Data	Description					
(P+27)h =60h	01h	(P+2F)h =68h	0Fh	Number of identical banks within bank region 2					
(P+28)h =61h	00h	(P+30)h =69h	00h						
(P+29)h =62h	11h	(P+31)h =6Ah	11h	Number of program or erase operations allowed in bank region 2: Bits 0-3: Number of simultaneous program operations Bits 4-7: Number of simultaneous erase operations					
(P+2A)h =63h	00h	(P+32)h =6Bh	00h	Number of program or erase operations allowed in other banks while a bank in this region is programming Bits 0-3: Number of simultaneous program operations Bits 4-7: Number of simultaneous erase operations					
(P+2B)h =64h	00h	(P+33)h =6Ch	00h	Number of program or erase operations allowed in other banks while a bank in this region is erasing Bits 0-3: Number of simultaneous program operations Bits 4-7: Number of simultaneous erase operations					
(P+2C)h =65h	02h	(P+34)h =6Dh	01h	Types of erase block regions in region 2 n = number of erase block regions with contiguous same-size erase blocks. Symmetrically blocked banks have one blocking region. (2)					
(P+2D)h =66h	06h	(P+35)h =6Eh	07h						
(P+2E)h =67h	00h	(P+36)h =6Fh	00h	Bank Region 2 Erase Block Type 1 Information Bits 0-15: n+1 = number of identical-sized erase blocks					
(P+2F)h =68h	00h	(P+37)h =70h	00h	Bits 16-31: n×256 = number of bytes in erase blocks					
(P+30)h =69h	01h	(P+38)h =71h	01h						
(P+31)h =6Ah	64h	(P+39)h =72h	64h	Bank Region 2 (Erase Block Type 1)					
(P+32)h =6Bh	00h	(P+3A)h =73h	00h	Minimum block erase cycles × 1000					
(P+33)h =6Ch	01h	(P+3B)h =74h	01h	Bank Region 2 (Erase Block Type 1): Blts per cell, internal ECC Bits 0-3: bits per cell in erase region Bit 4: reserved for "internal ECC used" Blts 5-7: reserved					

^{2.} Bank Regions. There are two Bank Regions, 1 contains all the banks that are made up of main blocks only, 2 contains the banks that are made up of the parameter and main blocks.


M36WT864T	F (top)	M36WT864BF	(bottom)	Description					
Offset	Data	Offset	Data	Description Rank Region 2 (Frase Block Type 1): Page mode and					
(P+34)h =6Dh	03h	(P+3C)h =75h	03h	Bank Region 2 (Erase Block Type 1): Page mode and synchronous mode capabilities (defined in table 10) Bit 0: Page-mode reads permitted Bit 1: Synchronous reads permitted Bit 2: Synchronous writes permitted Bits 3-7: reserved					
(P+35)h =6Eh	07h								
(P+36)h =6Fh	00h			Bank Region 2 Erase Block Type 2 Information Bits 0-15; n+1 = number of identical-sized erase blocks					
(P+37)h =70h	02h			Bits 16-31: n×256 = number of bytes in erase block region					
(P+38)h =71h	00h								
(P+39)h =72h	64h			Bank Region 2 (Erase Block Type 2)					
(P+3A)h =73h	00h			Minimum block erase cycles × 1000					
(P+3B)h =74h	01h			Bank Region 2 (Erase Block Type 2): Blts per cell, internal ECC Bits 0-3: bits per cell in erase region Bit 4: reserved for "internal ECC used" Blts 5-7: reserved					
(P+3C)h =75h	03h			Bank Region 2 (Erase Block Type 2): Page mode and synchronous mode capabilities (defined in table 10) Bit 0: Page-mode reads permitted Bit 1: Synchronous reads permitted Bit 2: Synchronous writes permitted Bits 3-7: reserved					
(P+3D)h =76h		(P+3D)h =76h		Feature Space definitions					
(P+3E)h =77h		(P+3E)h =77h		Reserved					

Note: 1. The variable P is a pointer which is defined at CFI offset 15h.

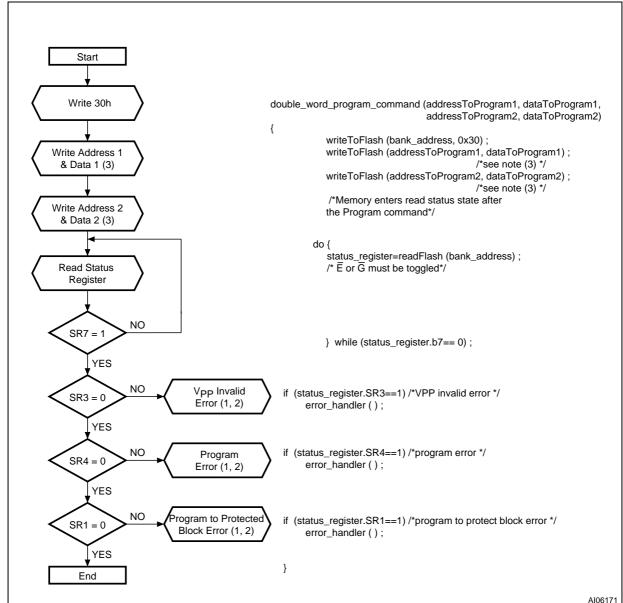
2. Bank Regions. There are two Bank Regions, Region 1 contains all the banks that are made up of main blocks only, Region 2 contains the banks that are made up of the parameter and main blocks.

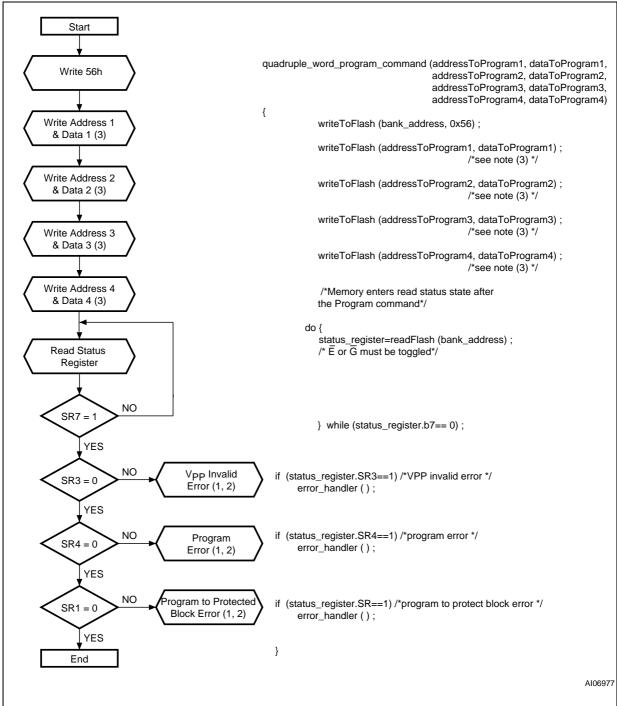
APPENDIX C. FLASH FLOWCHARTS AND PSEUDO CODES

Figure 28. Program Flowchart and Pseudo Code

Note: 1. Status check of SR1 (Protected Block), SR3 (V_{PP} (V_{PPF}) Invalid) and SR4 (Program Error) can be made after each program operation or after a sequence.

2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.




Figure 29. Double Word Program Flowchart and Pseudo code

Note: 1. Status check of b1 (Protected Block), b3 (V_{PP} (V_{PPF}) Invalid) and b4 (Program Error) can be made after each program operation or after a sequence.

3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.

^{2.} If an error is found, the Status Register must be cleared before further Program/Erase operations.

Figure 30. Quadruple Word Program Flowchart and Pseudo Code

Note: 1. Status check of SR1 (Protected Block), SR3 (V_{PP} (V_{PPF}) Invalid) and SR4 (Program Error) can be made after each program operation or after a sequence.

^{2.} If an error is found, the Status Register must be cleared before further Program/Erase operations.

^{3.} Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.

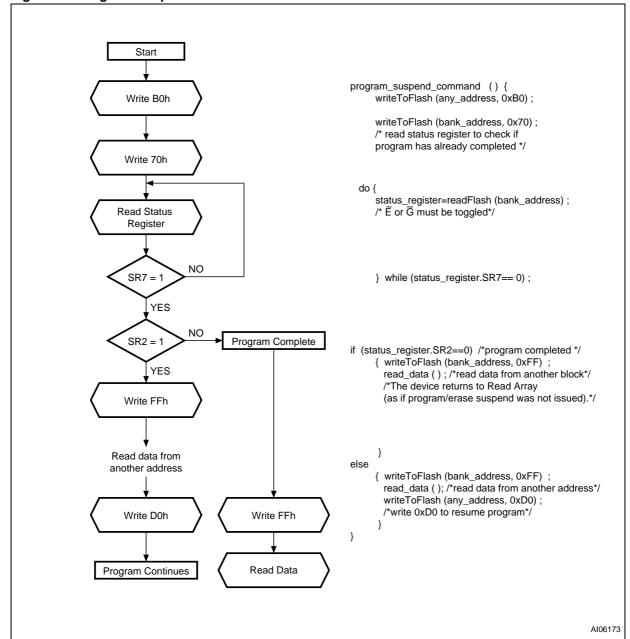
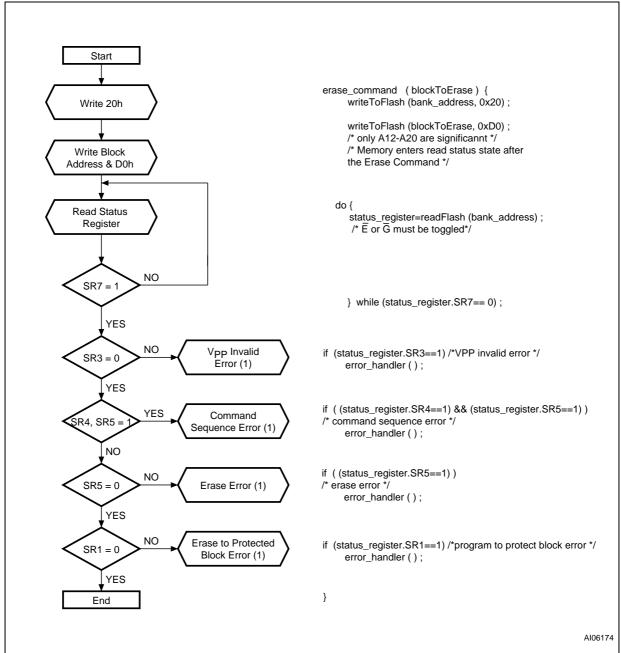
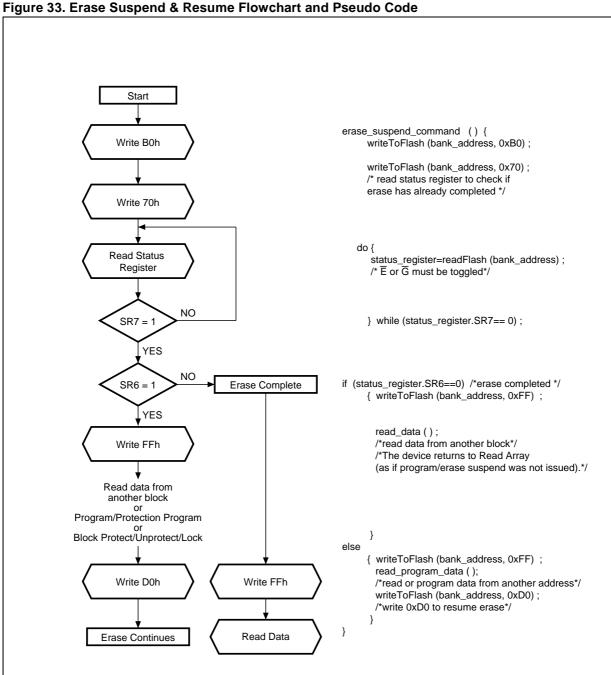
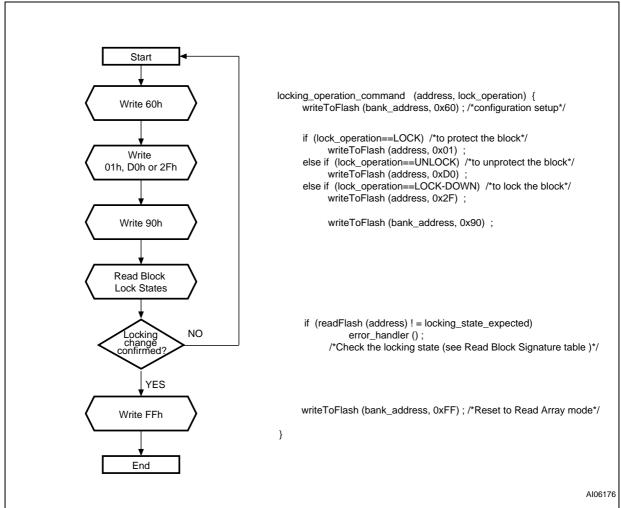




Figure 31. Program Suspend & Resume Flowchart and Pseudo Code

Figure 32. Block Erase Flowchart and Pseudo Code


Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.

4

AI06175

Figure 34. Locking Operations Flowchart and Pseudo Code

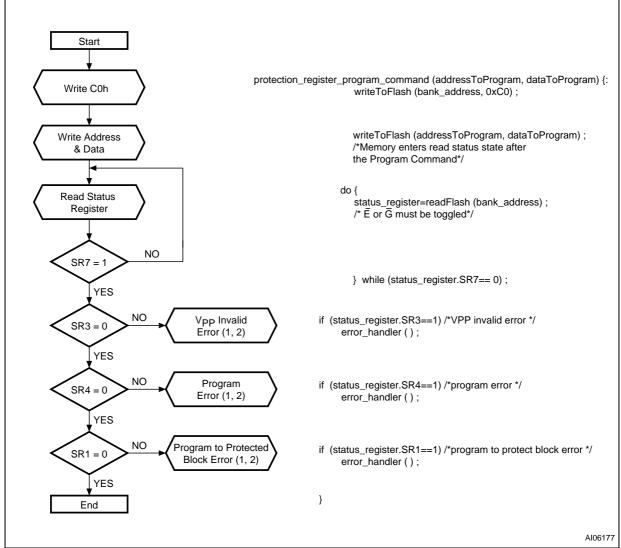


Figure 35. Protection Register Program Flowchart and Pseudo Code

Note: 1. Status check of SR1 (Protected Block), SR3 (V_{PP} (V_{PPF}) Invalid) and SR4 (Program Error) can be made after each program operation or after a sequence.

2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.

Figure 36. Enhanced Factory Program Flowchart

Enhanced Factory Program Pseudo Code

```
efp_command(addressFlow,dataFlow,n)
  n is the number of data to be programmed */
         /* setup phase */
        writeToFlash(addressFlow[0],0x30);
        writeToFlash(addressFlow[0],0xD0);
        status_register=readFlash(any_address);
        if (status_register.b7==1){
                 /*EFP aborted for an error*/
                 if (status_register.b4==1) /*program error*/
                          error_handler();
                 if (status_register.b3==1) /*VPP invalid error*/
                          error_handler();
                 if (status_register.bl==1) /*program to protect block error*/
                          error_handler();
        else{
                  /*Program Phase*/
                 do{
                          status_register=readFlash(any_address);
                          /* E or G must be toggled*/
                 } while (status_register.b0==1)
                  /*Ready for first data*/
                 for (i=0; i++; i < n){
                          writeToFlash(addressFlow[i],dataFlow[i]);
                          /* status register polling*/
                          do{
                                   status_register=readFlash(any_address);
                                   /* E or G must be toggled*/
                          } while (status_register.b0==1);
                          /* Ready for a new data */
                 writeToFlash(another_block_address,FFFFh);
                 /* Verify Phase */
for (i=0; i++; i< n){</pre>
                          writeToFlash(addressFlow[i],dataFlow[i]);
                          /* status register polling*/
                          do{
                                   status_register=readFlash(any_address);
                                   /* E or G must be toggled*/
                          } while (status_register.b0==1);
                          /* Ready for a new data */
                 writeToFlash(another_block_address,FFFFh);
                 /* exit program phase */
                  /* Exit Phase */
                 /* status register polling */
                 do{
                          status_register=readFlash(any_address);
                          /* E or G must be toggled */
                  } while (status_register.b7==0);
                 if (status_register.b4==1) /*program failure error*/
                          error_handler();
                 if (status_register.b3==1) /*VPP invalid error*/
                          error_handler();
                 if (status_register.bl==1) /*program to protect block error*/
                          error_handler();
        }
}
```

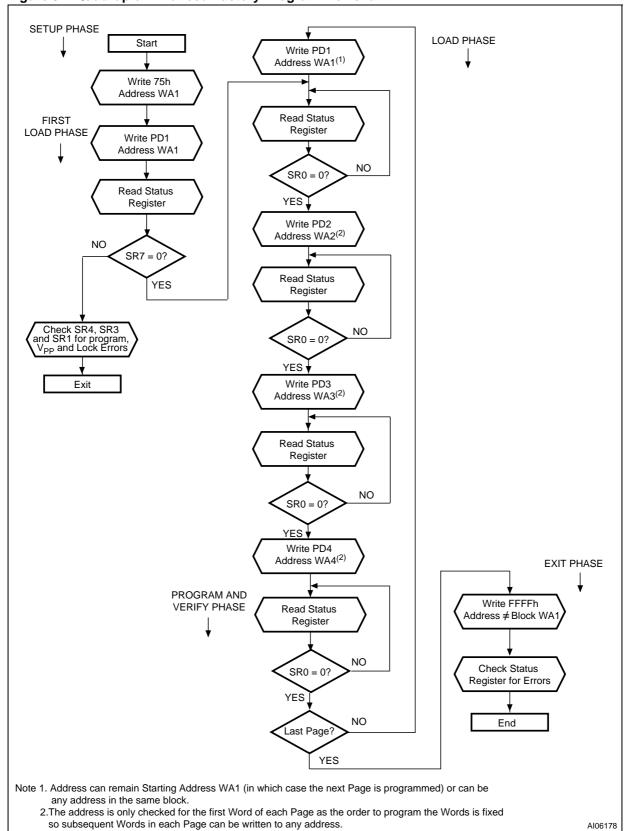


Figure 37. Quadruple Enhanced Factory Program Flowchart

Quadruple Enhanced Factory Program Pseudo Code

```
quad_efp_command(addressFlow,dataFlow,n)
/* n is the number of pages to be programmed.*/
       /* Setup phase */
       writeToFlash(addressFlow[0],0x75);
       for (i=0; i++; i< n) {
              /*Data Load Phase*/
              /*First Data*/
              writeToFlash(addressFlow[i],dataFlow[i,0]);
              /*at the first data of the first page, Quad-EFP may be aborted*/
              if (First_Page) {
                     status_register=readFlash(any_address);
                     if (status_register.b7==1){
                            /*EFP aborted for an error*/
                            if (status_register.b4==1) /*program error*/
                                   error_handler();
                            if (status_register.b3==1) /*VPP invalid error*/
                                   error_handler();
                            if (status_register.bl==1) /*program to protect block error*/
                                   error_handler();
                     }
              /*2nd data*/
              do{
                     status_register=readFlash(any_address);
                     /* E or G must be toggled*/
              }while (status_register.b0==1)
              writeToFlash(addressFlow[i],dataFlow[i,1]);
              /*3rd data*/
              do{
                     status_register=readFlash(any_address);
                     /* E or G must be toggled*/
              }while (status_register.b0==1)
              writeToFlash(addressFlow[i],dataFlow[i,2]);
              /*4th data*/
              do{
                     status_register=readFlash(any_address);
                     /* E or G must be toggled*/
       }while (status_register.b0==1)
              writeToFlash(addressFlow[i],dataFlow[i,3]);
              /* Program&Verify Phase */
             do{
                     status_register=readFlash(any_address);
                     /* E or G must be toggled*/
       }while (status_register.b0==1)
       /* Exit Phase */
       writeToFlash(another_block_address,FFFFh);
       /* status register polling */
       do{
              status_register=readFlash(any_address);
              /* E or G must be toggled */
       } while (status_register.b7==0);
       if (status_register.bl==1) /*program to protected block error*/
              error_handler();
       if (status_register.b3==1) /*VPP invalid error*/
              error_handler();
       if (status_register.b4==1) /*program failure error*/
              error_handler();
}
```

APPENDIX D. FLASH COMMAND INTERFACE STATE TABLES

Table 44. Command Interface States - Modify Table, Next State

		Next CI State After Command Input										
Current CI State		Read Array ⁽²⁾	Program WP setup (3,4)	Program DWP, QWP Setup (3,4)	Block Erase, Bank Erase Setup (3,4)	EFP Setup	Quad- EFP Setup	Erase Confirm P/E Resume, Block Unlock confirm, EFP Confirm	Program/ Erase Suspend	Read Status Register	Clear status Register (5)	Read Electronic signature, Read CFI Query
Rea	ady	Ready	Program Setup	Program Setup	Erase Setup	EFP Setup	Quad-EFP Setup			Ready		
Lock/Cl	R Setup			Ready (L	ock Error)			Ready		Ready (L	ock Error)	
ОТР	Setup						OTP Bus	V				
011	Busy							,				
	Setup						Program Bu	ısy				
Program	Busy			l	Program Bus	У			Program Suspended	Program Busy		
	Suspend		Program Suspended Program Busy							Program Suspended		
	Setup			Ready	(error)			Erase Busy		Ready (error)		
Erase	Busy				Erase Busy				Erase Suspended Erase Busy			
	Suspend	Erase Suspended							Erase Suspended			
	Setup	Program in Erase Suspend Busy										
Program in Erase	Busy			Program i	n Erase Susp	end Busy			Program in Erase Suspend Suspended	Program in Erase Suspend Busy		spend Busy
Suspend	Suspend	Program in Erase Suspend Suspended							Program in Erase Suspend Suspended			
Lock/Cl	R Setup			Erase Susper	nd (Lock Error)		Erase		Erase Suspe	nd (Lock Em	or)
in Erase	Suspend Setup			•		<u> </u>		Suspend EFP Busy		•		- /
				Ready	(ellul)		EED D	,		Read	y (error)	
EFP	Busy						EFP Busy					
	Verify						EFP Verify					
Quad	Setup						Quad EFP Bu					
EFP	Busy					C	Quad EFP Bu	ısy ⁽⁶⁾				

Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Factory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase Controller.

- 3. The two cycle command should be issued to the same bank address.
- 4. If the P/E.C. is active, both cycles are ignored.
- 5. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.
- 6. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to '0'.EFP and Quad EFP are busy if Block Address is first EFP Address. Any other commands are treated as data.

^{2.} At Power-Up, all banks are in Read Array mode. A Read Array command issued to a busy bank, results in undetermined data output.

Table 45. Command Interface States - Modify Table, Next Output

Table 45. Coll	····aiia	interrace	Otates				•				
	Next Output State After Command Input (6)										
Current CI State	Read Array ⁽²⁾	Program DWP, QWP Setup (3,4)	Block Erase, Bank Erase Setup (3,4)	EFP Setup	Quad- EFP Setup	Erase Confirm P/E Resume, Block Unlock confirm, EFP Confirm	Program/ Erase Suspend	Read Status Register	Clear status Register (5)	Read Electronic signature, Read CFI Query	
Program Setup				<u> </u>				l.			
Erase Setup											
OTP Setup											
Program in											
Erase Suspend	Chattie De sister										
EFP Setup	Status Register										
EFP Busy											
EFP Verify											
Quad EFP Setup											
Quad EFP Busy											
Lock/CR Setup											
Lock/CR Setup in Erase Suspend					Sta	atus Registe	r				
OTP Busy	Array		Status R	egister		Output U	nchanged	Status Register	Output Unchanged	Status Register	
Ready											
Program Busy											
Erase Busy											
Program/Erase	Status Cutaut Electronic										
Program in Erase Suspend Busy	Array Status Register Output Unchanged Status Register Output Unchanged CFI										
Program in Erase Suspend Suspended											

Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Factory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase Controller.

- 4. If the P/E.C. is active, both cycles are ignored.
- 5. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.
- 6. The output state shows the type of data that appears at the outputs if the bank address is the same as the command address. A bank can be placed in Read Array, Read Status Register, Read Electronic Signature or Read CFI Query mode, depending on the command issued. Each bank remains in its last output state until a new command is issued. The next state does not depend on the bank's output state.

4

^{2.} At Power-Up, all banks are in Read Array mode. A Read Array command issued to a busy bank, results in undetermined data output.
3. The two cycle command should be issued to the same bank address.

Table 46. Command Interface States - Lock Table, Next State

				Nex	t CI State After	r Command I	nput				
Current	CI State	Lock/CR Setup ⁽⁴⁾	OTP Setup	Block Lock Confirm	Block Lock-Down Confirm	Set CR Confirm	EFP Exit, Quad EFP Exit ⁽³⁾	Illegal Command (5)	P/E. C. Operation Completed		
Rea	dy	Lock/CR Setup	OTP Setup		N/A						
Lock/CR	Setup	Ready (L	ock error)		Ready		Ready (L	ock error)	N/A		
ОТР	Setup			•	OTP Busy				N/A		
OIF	Busy	OTF Busy									
	Setup				Program Busy				N/A		
Program	Busy				Program Busy				Ready		
	Suspend	Program Suspended									
	Setup	Ready (error)									
	Busy	Erase Busy									
Erase	Suspend	Lock/CR Setup in Erase Suspend	Setup in Erase Suspended								
	Setup	Program in Erase Suspend Busy									
Program in Erase Suspend	Busy	Program in Erase Suspend Busy									
	Suspend	Program in Erase Suspend Suspended									
Lock/CR in Erase \$		Erase Susper	nd (Lock error)	ı	Erase Suspend			Erase Suspend (Lock error)			
	Setup	Ready (error)							N/A		
EFP	Busy			EFP Busy (2)			EFP Verify	EFP Busy ⁽²⁾	N/A		
	Verify	EFP Verify (2) Ready EFP Verify(EFP Verify ⁽²⁾	Ready		
	Setup		Quad EFP Busy ⁽²⁾								
QuadEFP	Busy	Quad EFP Busy (2) Ready Quad EFP Busy(2)						Ready			

Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Factory Program, P/E. C. = Program/Erase Controller.

^{2.} EFP and Quad EFP are allowed only when Status Register bit SR0 is set to '0'. EFP and Quad EFP are busy if Block Address is first EFP Address. Any other commands are treated as data.

^{3.} EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.

^{4.} If the P/E.C. is active, both cycles are ignored.

^{5.} Illegal commands are those not defined in the command set.

Table 47. Command Interface States - Lock Table, Next Output

	Next Output State After Command Input										
Current CI State	Lock/CR Setup ⁽³⁾	OTP Setup	Block Lock Confirm	Block Lock-Down Confirm	Set CR Confirm	EFP Exit, Quad EFP Exit ⁽²⁾	Illegal Command (4)	P/E. C. Operation Completed			
Program Setup				•							
Erase Setup											
OTP Setup											
Program in Erase Suspend											
EFP Setup		Status Register									
EFP Busy											
EFP Verify											
Quad EFP Setup											
Quad EFP Busy											
Lock/CR Setup								Output			
Lock/CR Setup in Erase Suspend		Status I	Register		Array	Status F	Register	Output Unchanged			
OTP Busy	Status I	Register	O	utput Unchang	ed	Array	Output Unchanged	Output Unchanged			
Ready											
Program Busy											
EraseBusy											
Program/Erase	Output Output										
Program in Erase Suspend Busy	Status Register Output Unchanged Array Unchanged Unchanged										
Program in Erase Suspend Suspended											

Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Factory Program, P/E. C. = Program/Erase Controller.

EPP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.

^{3.} If the P/E.C. is active, both cycles are ignored.

^{4.} Illegal commands are those not defined in the command set.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com